
Large Synoptic Survey Telescope (LSST)
Data Management

QA Strategy Working Group Report

Bellm, E.C., Chiang, H.-F., Fausti, A., Krughoff, K.S., MacArthur,
L.A., Morton, T.D., Swinbank, J.D. (chair) and Roby, T.

DMTN-085

Latest Revision: 2019-01-24

Abstract

This document describes the work undertaken by the QA Strategy Working Group
and presents its conclusions as a series of recommendations to DM Project Manage-
ment.

LARGE SYNOPTIC SURVEY TELESCOPE

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

Change Record

Version Date Description Owner name
1.0 2019-01-24 Released to DMLT. Swinbank

Document source location: https://github.com/lsst-dm/dmtn-085

ii

https://github.com/lsst-dm/dmtn-085

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

Contents

1 Introduction 1

2 Approach to the Problem 2

2.1 Pipeline debugging . 3

2.2 Drill down . 3

2.3 Datasets and test infrastructure . 4

3 Design sketch 4

3.1 Pipeline debugging . 4

3.2 Drill down . 6

3.3 Datasets and test infrastructure . 7

3.3.1 Small-scale unit and documentation tests 7

3.3.2 Integration tests . 7

3.3.3 Metric and performance tracking . 8

4 Core components 8

4.1 Updated pipeline debugging system . 9

4.2 Logging . 10

4.3 Workload management system . 11

4.4 Visualization . 12

4.4.1 Catalog visualization . 13

4.4.2 Image visualization . 14

4.5 Provenance . 15

4.6 Code quality documentation . 17

4.6.1 Unit tests . 17

4.6.2 Code review . 18

4.7 Documentation and examples . 18

4.8 CI system updates . 20

4.8.1 Notifications and failures . 20

4.8.2 Execution environment . 21

iii

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

4.9 Standard format dataset packages . 22

4.10 Standard format test packages . 25

4.11 Metric collection & tracking . 26

4.11.1 Metric definition and calculation . 27

4.11.2 Collecting metrics . 30

4.11.3 Metric tracking: dashboard and alerts . 31

4.12 Drill-down workflows . 33

5 Conclusion 37

A Recommendations 37

B Glossary 40

iv

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

QA Strategy Working Group Report

1 Introduction

This report constitutes the primary artifact produced by the DM QA Strategy Working Group
(QAWG), addressing its charge as defined in LDM-622.

It is worth starting by revisiting the definition of Quality Assurance, or QA. In particular, note
that LDM-522 defines QA as “Quality Analysis”, a process which is undertaken by humans dur-
ing commissioning and operations, and which stands in contrast to automated Quality Con-
trol (QC) systems. For the purposes of this group, we have taken a more holistic definition
(following the guidance in the charge) of QA, covering all activities undertaken by the Data
Management (DM) construction project to ensure the ultimate quality of its deliverables.

The complete scope of “QAwithin DM” is too large to be coherently addressed by any group on
a limited timescale. Per its charge, then, the QAWG has constrained itself to considering only
those aspects of QA which are most directly relevant to the construction of the LSST Science
Pipelines. In particular, we have considered the tools which developers need to construct and
debug individual algorithms; tools which can be used to investigate the execution of pipeline
runs at scales beyond those which are trivially addressable by individual developers on single
compute systems; and tools which can be used to demonstrate that the overall systemmeets
its requirements (to “verify” the system). This deliberately excludes broader requirements of
Commissioning, Science Validation, or run-time Science Data Quality Assurance (SDQA)1.

This report consists broadly of three parts. In §2, we describe the approach that the QAWG
took to addressing its charge. In §3, we present a high-level overview of the systems that we
envisage the future DM comprising. Finally, in §4 we identify specific components — which
maybepieces of software, documentation, procedures, or other artifacts— that should bede-
veloped to enable the capabilities we regard as necessary. In some cases, these components
may be entirely new developments; in others, existing tools developed by the DM subsystem
may already be fit for purpose, or can be adapted with some effort. We have noted when this
is the case.

Throughout, we provide a number of recommendations which we suggest should be adopted
by the DM Subsystem as a whole. These recommendations identify specific actions that

1Effectively, code executed during prompt or data release production processing to demonstrate that the data
being both ingested and released is of adequate quality.

1

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

should be taken or capabilities that should be provided; in general, addressing them will re-
quire action by the Project Manager or T/CAMs to schedule appropriate activities.

Finally, in Appendix B, we define a number of key terms which are used throughout this re-
port and which we suggest be adopted across DM to provide an unambiguous vocabulary for
referring to QA topics.

..

Recommendation

.

Adopt the definitions of QA-related terms in the DMTN-085 glossary
subsystem-wide.
For example, by inclusion in a subsystem-level glossary; refer toDM-9807,
DM-14877, and DM-14911.

2 Approach to the Problem

The QAWG addressed its charge by sub-dividing the problem space into three separate— but
overlapping — areas:

• Addressing the needs of developers writing and debugging algorithms on the small
scale;

• Developing tooling to address the drill down use case;

• Providing the infrastructure needed to support automated testing and verification.

Each of these areas were assigned to a separate sub-group within the WG for brainstorm-
ing and developing approaches, with each sub-group regularly reporting progress to overall
working group meetings.

As each sub-group developed a strong concept for the tooling needed to address their par-
ticular part of the charge, the whole working group reviewed each design in detail, identifying
and developing specifications for common components or activities that enable one or more
of the designs.

In §§2.1, 2.2 and 2.3, we provide details about the charge provided to each sub-group.

2

https://jira.lsstcorp.org/browse/DM-9807
https://jira.lsstcorp.org/browse/DM-14877
https://jira.lsstcorp.org/browse/DM-14911

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

2.1 Pipeline debugging

What tools do we need to help pipeline developers with their every-day work? Specifically:

• How do you go about debugging a Task that is crashing?

• Is lsstDebug adequate?

• Do we need an afwFigure, for generating plots, to go alongside afwDisplay, for showing
images?

• What additional capabilities are needed for developers running and debugging at scale,
e.g. log collection, identification of failed jobs, etc.

• What’s needed froman image viewer for pipeline developers? Is DS9 or Firefly adequate?
Is there value to the afwDisplay abstraction layer, or does it simply make it harder for us
to use Firefly’s advanced features?

• How do we view images that don’t fit in memory on a single node?

• How do we handle fake sources? Is this a provenance issue?

2.2 Drill down

How can we provide developers and testers with the ability to “drill down” from high level ag-
gregated metrics to explore the source data and intermediate data products that contributed
to them? Specifically:

• What types of metric should be extracted from running pipelines2?

• How can those metrics be displayed on a dashboard? Is a simple time-series adequate,
or do we need other types of plotting?

• By what mechanism can the user drill-down from those aggregated metrics to identify
sources of problems? Do they click through pre-generated plots, or jump straight into a
notebook environment?

• Assuming the user ends up in an interactive environment, what are its capabilities?
2Scalars, vectors, spatially binned quantities, etc.

3

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

• What do the above tell us about the data products that pipelines need to persist (both
in terms of metrics that are posted to SQuaSH, and regular pipeline outputs, Parquet
tables, HDF5 files, etc)?

2.3 Datasets and test infrastructure

What infrastructure must we make available to enable testing and verification of the DM sys-
tem? Specifically:

• Are any changes needed to the way that DM currently handles unit testing?

• How are datasets made available to developers? Git LFS repositories? GPFS?

• What is the appropriate cadence for running small/medium/large scale integration tests
and reprocessing of fixed datasets?

• How is the system for tracking metrics managed? — how are the metric calculation jobs
run? By whom? How often?

• How should run-time performance of the science algorithms be tracked?

3 Design sketch

In this section, we summarize the issues identified and approaches suggested by the groups
described in §2. From these, we synthesize a number of concrete actions — tools to be de-
veloped, documentation to be provided, etc — which we recommend to the project in §4.

3.1 Pipeline debugging

The group does not identify a single, over-arching tool or concept which would solve the prob-
lem of developer productivity and happiness. Instead, we believe that developer needs can
be best addressed by making incremental improvements to a number of core pieces of DM
technology and infrastructure which team members regularly interact with. In particular, we
identified the following major “pain points” for developers:

• The pipeline debugging system, lsstDebug, is badly documented and awkward to use,
and developers lack appropriate guidelines on how to embed debugging information

4

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

into algorithms or on how to use that information to most effectively debug running
pipelines.

• Developers find it hard to know how to debug their code when it is running at scale. Is-
sues include parsing logs when a large number of concurrent processes are running; in-
adequate documentation of the existing Slurm system; uncertainty about replacement
of Slurm with a future workflow system; and difficulties in understanding the prove-
nance of data products.

• The project has issued unclear guidance and inadequate documentation to developers
about the appropriate tools to be used for visualizing data. This is most pronounced for
image visualization3, but also applies to catalog data.

• Developers struggle to identify suitable datasets for running tests—both small and large
scale — in a convenient form. Large repositories exist on the project GPFS system, but
it’s unclear what they contain or how to effectively access them4; smaller repositories
exist on GitHub5, but they are inconsistent in structure, content and documentation: it’s
impossible for a developer to quickly identify data which is relevant to their use case,
or to establish whether some particular reduction of the data is “correct”. Instead, they
rely on folklore and talking to peers to find data that “worked for somebody else”, with
(often) predictably frustrating results.

To address these issues, theworking group suggests the development of a number of separate-
but-related components. These include:

• An updated system for instrumenting running pipeline code; effectively, a revision of
lsstDebug. This is developed further in §4.1.

• A revised set of tooling for generating, aggregating and analyzing logs. This is developed
further in §4.2.

• Revised documentation on interacting with the workload management system. This is
developed further in §4.3.

3Developers have the impression they “ought to” be using Firefly, but there is much uncertainty around its
suitability for the task and its future development direction.

4A canonical example is the Hyper Suprime-Cam (HSC) public data release: the volume of data is overwhelming
for a developer who simply needs some representative HSC data to test an algorithm.

5e.g. validation_data_hsc, afwdata, ap_verify_hits2015, etc.

5

https://github.com/lsst/validation_data_hsc
https://github.com/lsst/afwdata
https://github.com/lsst/ap_verify_hits2015

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

• Guidelines for the structure and maintenance of data repositories. This is developed
further in §4.9.

• A clear roadmap for the development of visualization tools, and, derived from that,
guidelines on how to apply those in the development of pipelines. This is developed
further in §4.4.

In addition, the WG suggests prioritization of developer-accessible systems for tracking and
understanding the provenance of pipeline outputs. For additional comments on provenance
from a QA perspective, refer to §4.5.

3.2 Drill down

Drill-down workflows center on the need to quickly and efficiently identify data processing
problems. Typically, these will be identified from discrepancies identified at higher levels of
summary and aggregation.

We therefore envisage a drill-down system that provides rapid retrieval of relevant quantities
(metric values, image cutouts, catalog overlays, etc.) combined with readily-(re)configurable
interactive plotting tools. This is provided in a browser-based tool which enables the user to
rapidly access successive layers of detail on aggregated metrics (effectively “de-aggregating”
them on demand), and ultimately enables the user to seamlessly transition to an interactive
analysis environment6 primed with the data under investigation. Further details about the
design and capabilities of such a system are presented in §4.12.

We suggest that this system should be linked with a metric tracking system: selected aggre-
gatemetrics from successive comparable7 processing should be tracked as a time series, with
the user able to identify outliers and rapidly switch to the drill-down system to investigate.
This capability is an extension of that already provided by SQuaSH, and is discussed further
in §4.11.3.

The system implementing these capabilities must be able to handle large datasets — for ex-
ample, an entire HSC public data release — quickly. Furthermore, we emphasize the impor-
tance of ease-of-use for the QA analyst in order to shorten debugging cycles.

We also note that an effective provenance system is fundamental to both drill-down and
6i.e. a Jupyter notebook
7i.e. using the same input data, running with the same configuration

6

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

metric-tracking use cases; we discuss this further in §4.5.

3.3 Datasets and test infrastructure

The group regards this part of its charge as qualitatively different from the other two (§§3.1 &
3.2): where those focus on servicing the needs of the individual developer or analyst, this ma-
terial describes the capabilities that are required by the overall subsystem to track its progress
and verify its deliverables.

We considered the following three aspects of this part of the charge:

3.3.1 Small-scale unit and documentation tests

The current unit test and Continuous Integration (CI) system functions well. However, we
suggest a number of improvements. These include clearer instructions to developers on the
expectations for testing (discussed in §4.6) and assorted minor upgrades to the CI system,
primarily to enable more convenient failure notifications and tighter control of the test envi-
ronment (§4.8).

The single highest priority we identified was the lack of a current system for performing CI on
example code, documentation and (perhaps) Jupyter notebooks. This has already rendered
many of the examples provided in the current codebase obsolete — and because they aren’t
regularly tested, we have noway to knowwhat else is broken andwill fail or otherwise confuse
new (or existing) users. We regard addressing this as one of the single highest priorities for
the project. It is discussed further in §4.7.

3.3.2 Integration tests

DM’s integration test needs are currently served by a heterogeneousmix of approaches: from
“unit” tests which effectively test the integration of multiple packages, to explicit integration
jobs executed by the CI system — of which there are multiple types, and no common imple-
mentation standard8 — to large scale data processing exercises undertaken periodically at
the LSST Data Facility (LDF)9.

We posit that a unified and documented approach to integration testing will provide lower
8See lsst_dm_stack_demo, ci_hsc, validate_drp, etc.
9e.g. https://confluence.lsstcorp.org/display/DM/Reprocessing+of+the+HSC+RC2+dataset.

7

https://github.com/lsst/lsst_dm_stack_demo
https://github.com/lsst/ci_hsc
https://github.com/lsst/validate_drp
https://confluence.lsstcorp.org/display/DM/Reprocessing+of+the+HSC+RC2+dataset

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

implementation overheads, fewer surprises for developers, and more predictable coverage
for the project. We expand on the considerations and design for such a system in §4.10.

Developing a standardized approach to integration testing requires a standardized approach
to the management of test datasets: this is addressed in §4.9. It also impacts upon the CI
system, and hence is relevant to §4.8.

Finally, we note that the way in which pipelines are defined and executed will likely evolve
rapidly over the remainder of the construction period as technologies like PipelineTask and
Butler Generation 3 come into use. Given the rapidly-moving nature of this work, the QAWG
regards them as out of scope, except insofar as we urge that QA tasks should be implemented
and kept up to date with these new frameworks as they become available.

3.3.3 Metric and performance tracking

DM already has a metric-tracking system based on SQuaSH. This effectively tracks the time
evolution of a number of aggregatemetrics based on data processing under controlled condi-
tions (effectively, the results of selected integration tests, carried out as per §3.3.2). This basic
machinery is excellent, but has suffered from low adoption among DM developers, and it is
not clear that any regular checking of or acting upon trends in the calculated metrics is being
undertaken.

We therefore propose a series of updates and refinements to SQuaSH, focusing on a series of
modest enhancements to its capabilities to alert DM developers and management to regres-
sions (or improvements) in selected performance metrics. These are developed in §4.11.3.

The primary means by which data is submitted to SQuaSH is through the lsst.verify frame-
work and associated metric definitions. The mechanisms by which this framework is inte-
gratedwith the Science Pipelines require further definition (refer toDMTN-057 andDMTN-098
for discussion) and it has never undergone a design review or acceptance process. Clearer
ownership and direction for this part of the system are essential to drive adoption. We discuss
this in more detail and provide suggestions in §4.11.2.

4 Core components

8

https://github.com/lsst/verify

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

4.1 Updated pipeline debugging system

This component is derived from §3.1.

The existing pipeline debugging system, lsstDebug, provides useful capabilities, but — per-
haps due to an idiosyncratic user interface and lack of documentation — is frequently not
properly exploited. Since the total amount of code involved in the old system, both imple-
menting it and using it, is modest, we suggest its wholesale replacement by an alternative,
more approachable, system.

..

Recommendation

.

Develop a new pipeline instrumentation and debugging system, replacing
lsstDebug.
The total effort expended here should be modest: we expect that de-
sign, implementation and documentation of a new system should take
no more than one full time equivalent month. Converting existing code
make take somewhat longer.

The capabilities of the new system would remain broadly the same as lsstDebug. Specifically,
enabling debugging mode would set a flag within the codebase. Developers can check for
that flag, and take appropriate actions (e.g. spawning additional plots) if it is set. However,
establishing a baseline expectation of what actions are appropriate or expected within this
debugging context will require input from the leadership team.

..

Recommendation

.

Guidelines for the effective use of the pipeline debugging system should be
supplied to developers.
These guidelines should be supplied by the Science Pipelines Product
Owners and the LSST Software Architect, andmade available through the
DM Developer Guide.

Developers and users rightly expect that the debugging system will provide an idiomatic user
interface. We suggest that the complexity of the existing lsstDebug interface has been a bar
to adoption. We therefore propose that simplicity be a key aim of the new system. In that

9

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

vein, we suggest that the debugging system should be controlled by a single Boolean param-
eter, with no further user-driven customization, and with very explicit documentation. We
acknowledge that this is a direct trade-off between granularity and simplicity, and suggest
that history drives us to err on the side of simplicity.

..

Recommendation

.

Debugging mode should be binary: it is either enabled or disabled, with no
further configuration.
For example, within a Task, onemight check if debuggingmode is enabled
with a statement like if self.config.debug:

The natural consequence of this is that debugging of tasks invokved by some form of mid-
dleware (e.g. CmdLineTask, PipelineTask called by an executor) should receive an explicit ar-
gument enabling debugging. All other callables that support debugging must take an explicit
argument that enables it.

4.2 Logging

This component is derived from §3.1.

Logging is an important aspect of running large data processing. It is also integral to quality
assessment as the logging information provides important contextual information when in-
specting data for quality issues. Specifically, log messages presenting information about the
processing: e.g. PSF width, number of stars used in a model fit, can indicate problems with
the algorithmic behavior or input data. Logging also provides information about potential
causes for unexpected termination including exit codes and exceptions.

DM already provides a logging system (the “log” package), and the API documentation pro-
vided for it10 is adequate11.

However, the outputs of the logging system become increasingly hard to parse as the num-
ber of concurrent processes increases: a common complaint when running large-scale data
processing is that it’s difficult to identify failures and understand where they came from.

10https://developer.lsst.io/stack/logging.html
11It is, perhaps, worth noting that configuring the output of the logging system is much less straightforward and

is badly documented: http://doxygen.lsst.codes/stack/doxygen/x_masterDoxyDoc/log.html#configuration.

10

https://developer.lsst.io/stack/logging.html
http://doxygen.lsst.codes/stack/doxygen/x_masterDoxyDoc/log.html#configuration

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

A log aggregation and monitoring service should be provided for large-scale
processing jobs at the Data Facility.
Such a service should not be a requirement for jobs to execute (in particu-
lar, when running in non-Data Facility environments, logs should continue
to be generated and collected as at present).

Log aggregation should provide the following capabilities:

• Display all log messages from a given pipeline execution;

• Display messages at a selected log level (INFO, WARN, ERROR, etc);

• Display time-ordered logs for a given thread;

• Display logs, exit status and/or exceptions for threads ending in an unexpected state;

• Searchable per process for regexp and timestamp.

We believe that these capabilities could be provided by building atop off-the-shelf log aggre-
gation tools such as Logstash12. However, we suggest that exploring synergies with existing or
planned Data Facility services is likely essential. We emphasize that effective logmanagement
capabilities are of increasing importance not just in the operational era but in the immediate
future, as wemove towards large-scale data processing in support of commissioning: deploy-
ing a basic version of this service should be regarded as a high priority.

4.3 Workload management system

Derived from §3.1.

A commonly heard complaint from developers is that the logistics of running code at scale
for test purposes is too complex and unreliable. In particular, developers are concerned that
sometimes jobs fail to executewithout a reasonbeing clearly stated (the job simply disappears
from the Slurm queue, without explanation) or that it can be hard to understand from the logs
why a job failed or particular output was generated.

12https://www.elastic.co/products/logstash

11

https://www.elastic.co/products/logstash

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

The WG reached the conclusion that a wholesale rethinking of workload management is out-
side the scope of the group’s charge. Instead, we suggest just three key improvements: to
logging (to better identify and diagnose failures), to provenance (to better understand why
certain data products have been produced) and to documentation (primarily, to avoid con-
fusion over why certain jobs might vanish without trace). Logging and provenance are ad-
dressed in §4.2 and §4.5 respectively.

..

Recommendation

.

Tutorial and reference documentation for developers attempting to run jobs
at scale should be refreshed.
In particular, revised documentation should focus on identifying and re-
solving common failuremodes, and understanding how best to use exist-
ing resources, such as the dashboard at https://monitor-ncsa.lsst.org/,
to rapidly diagnose and escalate issues with underlying infrastructure.

4.4 Visualization

Derived from §3.1.

Broadly, we regard “visualization” as an umbrella term covering both visualizations derived
from catalogs as well as image display and manipulation. The concerns expressed by devel-
opers and others are, on the whole, common to both; the solutions may not be.

For both visualization regimes, the predominant request from developers is that the project
provide them with clear guidance as to both what resources will be provided and supported
by the LSST construction effort (for example, tools like Firefly or abstractions like afwDisplay)
and which tools they are required or expected to use in the interest of maintaining a coherent
and consistent codebase and set of outputs.

In this section, we concentrate on ad-hoc visualization in support of the regular pipeline de-
veloper. In §§3.2 and 4.12, we describe the design of an interactive “drill-down” tool, which
will provide a number of plotting and data exploration capabilities. It is our expectation that,
however comprehensive such a tool might become, there will always be a necessity for indi-
vidual developers to be able to quickly investigate their data in as flexible a way as possible;
conversely, wherever practical we should enable developers to exploit, and encourage them
to remain consistent with, the capabilities and conventions delivered by the drill-down tool.

12

https://monitor-ncsa.lsst.org/

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

These sections should therefore be regarded as complementary.

4.4.1 Catalog visualization

The group notes that there are many contexts in which visualizations derived from catalogs
might be required (for example, in-line display in a Jupyter notebook, persisting plots from a
debugging session, as described in §4.1, preparing plots for publication, etc), which may all
have substantially different requirements. We also note that there exists a diverse infrastruc-
ture of scientific plotting and data exploration tools in the Python community, a comprehen-
sive selection of which has been collated by the PyViz project13, which also provides docu-
mentation on effectively using them in conjunction with each other. Given that, we regard it
as unnecessary, and indeed undesirable, for LSST to attempt to standardize on any particular
plotting tool: we should rather encourage developers to exploit community resources with
minimal overhead.

..

Recommendation

.

DM should formally adopt the PyViz ecosystem.
This adoption would include, for example, including PyViz tools in a reg-
ular installation of the LSST Stack; providing training and documentation
for developers and—crucially—developing interfaceswhich enable LSST
conventions (afw tables, the Data Butler) to be used in the PyViz context.

Many visualization use cases involvemanipulating data at a larger scale than can conveniently
be done on a single compute node. Within the PyViz ecosystem, Dask14 is the preferred ap-
proach. We note that there many be some redundancy between Dask and the LSST middle-
ware (Butler, PipelineTask and appropriate executors, etc). However, Dask provides a conve-
nient, easy to install and use solution which can immediately address developer needs.

13http://pyviz.org
14http://dask.pydata.org/en/latest/

13

http://pyviz.org
http://dask.pydata.org/en/latest/

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

DM should adopt Dask to enable users to work with larger thanmemory data.
This might be achieved by providing users with the ability to spin up Dask
clusters on demand using (say) Kubernetes, or by providing aDask cluster
at the LSST Data Facility to which users can connect. If ongoing middle-
ware development renders this obsolete, then it can be retired.

4.4.2 Image visualization

The concern among developers about what they “ought” to be doing is particularly acutewhen
considering image visualization: developers are universally familiar with SAOImageDS915, but
also aware of other afwDisplay back-ends (Ginga16, Matplotlib17), and aware that project re-
sources are being spent on Firefly. This uncertainty is compounded becausemost developers
are unaware of long-term plans for Firefly, and even among systemmanagement there is un-
certainty about the Firefly development timeline and the extent to which Firefly development
is able to accommodate emergent work and requests in response to ongoing development.

..

Recommendation

.

DM should provide clear, written guidance to developers about the availabil-
ity, status and expected usage of image display tools.

We identify two separate regimes of image visualization:

1. A laptop with a small amount of data, where images and other results are inspected with
local tools;

2. A server-based environment, like the LSST Science Platform’s Notebook Aspect, where
centrally provided services have access to large amounts of data.

In the first case, a desktop application like DS9 may be convenient. However, in the second
regime, a server-side visualization tool like Firefly provides more convenient access to the

15http://ds9.si.edu/
16https://ginga.readthedocs.io/
17https://matplotlib.org

14

http://ds9.si.edu/
https://ginga.readthedocs.io/
https://matplotlib.org

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

data: it enables us to bring image display tools to the data, rather than image data to the
display.

In addition to the above, we identify three separate ways in which users may wish to use a
visualization tool:

1. As a standalone tool (albeit controllable via a Python API);

2. Embedded within a Jupyter Notebook;

3. As a separate “tab” within the JupyterLab environment.

We note that there are a number of LSST-specific requirements on image visualization. These
include display of LSST-style image masks, Footprints, and other specialized classes, as well
as a mechanism for conveniently visualizing the full focal plane.

Previous drafts of this document identified Firefly as the only viable choice for addressing
LSST-specific requirements and operating in all of the environments required by LSST. Un-
fortunately, following the recent changes to the scope of the DM Science User Interface and
Tools group (DMTN-096) it no longer seems practical to go “all in” on Firefly: we do not expect
Firefly to receive the concentrated attention on usability, responsiveness and LSST specific
features which it would require to become a subsystem-wide standard.

With some reluctance, therefore, the working group concludes that for the remainder of con-
struction DM developers will continue to operate with a heterogeneous mixture of visualiza-
tion tools. We regard this as a significant threat to the overall efficiency of the construction
effort, but are unable to suggest an alternative approach within the established schedule,
scope and budgetary constraints on the subsystem. We are further concerned about the
lack of high-quality visualization tooling available to the commissioning and science valida-
tion efforts — and, indeed, about the knock-on effects on what tooling will be available to
analyse LSST data during the operational era. However, these concerns are out of scope for
this group.

4.5 Provenance

Derived from §§3.1 & 3.2.

15

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

An effective provenance system is key to any form of QA work: it is clearly necessary to un-
derstand where a particular result came from in order to investigate issues it raises. This is
necessary for stand-alone quality analysis, but is fundamental to the proper operation of drill-
down and metric-tracking systems. Furthermore, some high level aggregate data products
that are derived from provenance data — for example, the number of images that contribute
to each coadd patch — are important in QA work.

The QAWG notes that provenance has long been discussed within DM, but detailed plans and
timelines have historically been fragmentary18. We are concerned that the lack of an effective
provenance system is a major barrier to productivity.

..

Recommendation

.

The design and implementation of the provenance system should have high
priority in the project scheduling.

The QAWG believes that the requirements on provenance tracking are adequate as described
in the Data Management Middleware Requirements (LDM-556) and Data Management Data
Backbone Services Requirements (LDM-635). QA use cases provide no further requirements.

In the Generation 3 Middleware design, Butler/PipelineTask framework is responsible for
recording provenance. For production runs, theData Backbone Servicesmay collect and store
additional provenance information— for example from the Batch Production Service— in ad-
dition to that generated by Butler and/or PipelineTask. In theQA use cases, though, we expect
the primary source of provenance will be Butler and PipelineTask.

In the Generation 3 Middleware, each dataset can be linked to provenance information such
as input datasets, pipeline definition, configurations, and software version (e.g. DMS-MWST-
REQ-0024 and DMS-MWBT-REQ-0096 in LDM-556). Assuming that the recommendation of
§4.11.1 is adopted, metric values will be stored as Butler datasets and will have associated
Data IDs. This will enable their provenance to be traced in the same way as other datasets.

The QAWG does not place strong requirements on per-source provenance of catalogs and
database records. The current design is that each database record in the production database
is either ingested from a file, of which the full provenance is traced, or from an uniquely iden-
tifiable execution. This design does not directly provide detailed per-source provenance —

18We hope the ongoing middleware development effort is remedying this!

16

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

such as which input images actually contribute to the measurement of a particular source —
but rather enables us to trace the full set of inputs that could have contributed to the source.
We suggest that this is adequate; if necessary, additional tooling to e.g. investigate the com-
position of coadds can be added to the drill-down system (§3.2).

4.6 Code quality documentation

Derived from §3.3.

DM values code quality, with an elaborate set of coding standards19, substantial unit test
suites, regular code review, and a set of automatic tests for compliance with code style rules.
However, while essential, these are often inconsistently applied, and developers are left con-
fused about what is actually required of them.

4.6.1 Unit tests

The scope of DM’s unit test system is not well defined. Tests range from true unit tests—
limited in scope to one “unit” of code—to what are effectively integration tests, relying on
functionality from many packages working in concert and testing that the results meet some
(often apparently arbitrary) numerical threshold. At this stage in the construction project, we
do not believe that a wholesale attempt to refactor or reconsider the way that these tests
are constructed is plausible, though: we suggest that the current situation is tolerable for the
remainder of the project.

However, developers continue to take inconsistent approaches to testing, and disagree (occa-
sionally publicly) about what it is necessary to test, in how much detail, and in what way. We
further note that the Developer Guide provides advice which is obsolete andwidely ignored20.
We believe that refreshing the developer-facing documentation, together with closer atten-
tion to the form and structure of tests in code reviews (§4.6.2), will pay dividends in terms of
reducing confusion and the potential for disagreement.

19https://developer.lsst.io/coding/intro.html
20https://developer.lsst.io/coding/unit-test-policy.html

17

https://developer.lsst.io/coding/intro.html
https://developer.lsst.io/coding/unit-test-policy.html

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

Obsolete and unclear sections of the Developer Guide should be rewritten to
provide clearer guidance on unit tests.
This should include at least:

• Guidance for unit vs. integration tests, and in which packages it is
appropriate towrite tests (e.g. is it adequate for certain functionality
to be only tested through packages like ci_hsc?);

• Requirements for code coverage;

• Appropriate languages for writing tests (should C++ code be tested
in C++, or is it acceptable—or encouraged—to test only the Python-
wrapped version?);

• Are there certain types of code that it is appropriate not to test (e.g.
boilerplate accessor methods)? How exhaustive should tests be?

4.6.2 Code review

Various aspects of the unit test system, e.g. coverage requirements, are best enforced through
code review. However, we currently provide minimal written guidelines to developers about
what code reviewers should be insisting on21.

..

Recommendation

.

The Developer Guide should be expanded to provide checklist-style documen-
tation for code reviewers making clear what is expected from them during the
review.

4.7 Documentation and examples

Derived from §3.3.

Across the codebase there are scripts, example code, and other utilities. Often these are
lurking in examples directories in stack packages. Occasionally they are exposed as Jupyter

21e.g. “is there adequate unit test coverage for the code?”, but with no guidance on what constitutes “adequate”.

18

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

notebooks, sometimes living in separate repositories. These examples are generally hard to
discover; often, they are only made available to new teammembers (or external third parties)
by chance conversation.

..

Recommendation

.

Provide a central location where examples, scripts and utilities which are not
fundamental to pipeline execution are indexed and made discoverable.
See also DM-15807.

We observe that many of these examples are old, obsolete and often broken. We note that
users attempting to run these examples will frequently report that they are found to be non-
functional. We further observe that developers are unclear about their obligations for updat-
ing these examples when writing new code, an issue which is compounded when the code
being changed is in a different package from the affected example. Finally, we regard broken
examples as contributing to an actively hostile user experience: no example is better than a
misleading or failing one.

..

Recommendation

.

The Project should adopt a documented (in the Developer Guide) policy on the
maintenance of example code.

Ultimately, all code — including examples — should be tested in the CI system: see below.
However, pending a mechanism for this, we suggest that:

• Developers are not required to search the codebase for examples whichmay be affected
by changes they are making elsewhere;

• When a broken example is discovered, it may be fixed if the changes required are trivial.
However, if substantial effort would be needed, the example should simply be removed
and an issue filed on Jira to request its reinstatement in future.

Ultimately, we suggest that examples should be tightly integrated with the overall documen-
tation effort.

19

https://jira.lsstcorp.org/browse/DM-15807

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

The Project should prioritize the development of a documentation system
which makes it convenient to include code examples and that tests those ex-
amples as part of a documentation build.

There are various technologies which could be adopted to address this goal22. The WG sug-
gests that standardizing upon a single technology is essential, but takes no position as to
which technology is most appropriate.

Finally, we note that the same concerns apply to executable code (in bin directories) which is
not regularly tested in CI.

4.8 CI system updates

Derived from §3.3.

DM’s “Jenkins” CI system provides a number of essential services to the Project and is a core
part of developer workflow. However, the QAWG suggests that a relatively modest set of
changes could dramatically improve its usefulness to developers and to the project overall.

4.8.1 Notifications and failures

Most importantly, the QAWG suggests that Jenkins should be more helpful in enabling rapid
response to build failures.

22For example, Jupyter notebooks or Sphinx doctests.

20

https://jupyter.org/
http://www.sphinx-doc.org/en/stable/ext/doctest.html

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

When running regularly scheduled (timer) jobs on the master branch of any
releasable product, any build failure should be announced prominently to key
stakeholders.
Those stakeholders should include:

• Senior DM management (DM Project Manager, DM Software Archi-
tect, Science Pipelines T/CAMs and Science Leads);

• The developer who caused the failure, if it is possible to identify
them

The term “prominent” should be taken to indicate a personalised mes-
sage (e.g. e-mail, direct Slack message), not a general posting in a Slack
channel which regularly sees traffic.

..

Recommendation

.

The Developer Guide should provide guidance about expected responses to
Jenkins failures.
For example, the policy for handling integration test (e.g. ci_hsc) failures a
merge must be documented: who is responsible for checking for failure?
Should the merge be reverted? Who is responsible for doing so?

4.8.2 Execution environment

DM requires a range of external packages (NumPy, SciPy, matplotlib, etc). Versioning con-
straints on these are checked by “stub” packages at configuration time. Typically, the only
check applied is that the available version exceeds some minimum: no maximum versioning
constraint is enforced. This exposes us to possible API breakage in newer versions of up-
stream packages. We do not regard this as requiring urgent intervention, but the team may
wish to consider enforcing version maximums at some point in the future.

For maximum coverage, all tests should be run with all possible combinations of external
packages. In practice, of course, this is prohibitive. However, it is essential that the code be
shown to work with the minimum versions of all packages documented as required.

21

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

The versions of external packages used in the Jenkins systemmust always cor-
respond to the minimum versions specified in stub packages and/or in the
document list of prerequisites.

We note that the details of this recommendation may be subject to alteration, depending on
changes to the DM release process and the way it interacts with third party dependencies.
However, the spirit of the recommendation— that our code must be checked with the library
versions it claims to support — should stand in any eventuality.

..

Recommendation

.

The project should adopt a single source of dependency information and ver-
sions.
Thismight consist of “stub” EUPS packages, or of a Conda environment, or
of a list of packages on a website, but there must be one unambiguously
authoritative source of information.

4.9 Standard format dataset packages

Derived from §3.3.

The DM subsystem curates a number of “datasets”: collections of data related by some under-
lying theme or use case. These themes might include originating from the same instrument
or facility (e.g. testdata_cfht); being used to test a particular package (e.g. testdata_jointcal);
or addressing some particular science case (e.g. ap_verify_hits2015).

Currently, DM’s datasets are heterogeneous: there is no accepted standard for the type of
data that a dataset should contain, and nor is there any standard for where the dataset is
stored or how it is curated. Some of DM’s datasets are stored on GPFS at the LSST Data Fa-
cility; some are made available through Git LFS23; some contain only raw data; some contain
calibration data; some contain processed data; some are regularly updated; some have doc-
umentation describing in detail what the dataset contains.

This lack of standardization limits the reuse of datasets (it is hard to reuse a dataset curated
23https://git-lfs.github.com; https://developer.lsst.io/git/git-lfs.html

22

https://git-lfs.github.com
https://developer.lsst.io/git/git-lfs.html

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

for one purpose for someother test unless one fully understands its contents) andmeans that
developers often struggle to find the most appropriate data to test or debug some particular
algorithm.

..

Recommendation

.

A standardized format for dataset repositories should be adopted across DM.
Obviously, not all repositories will have exactly the same contents: in
some cases, it may be necessary for a repository to contain (say) cali-
bration products, while in others they may be inappropriate. However,
it should be possible to establish at a glance what the contents of each
dataset is; if calibration products are included, it should be immediately
obvious what they are and how to apply them.

The key desiderata for standardizing the format of test datasets are:

• Developers would like low-friction access to test datasets. A central location where de-
velopers can look up what has been curated is desired.

• Developers would like datasets at multiple scales and representative of various data
quality and observing conditions. The properties of these datasets must be well under-
stood.

• Besides raw (unprocessed) data, intermediate andfinal data products fromvarious stages
of pipeline processing are desired. They facilitate testing of algorithms which are only
relevant to later parts of the pipeline or analysis codes without the need of regenerating
the products.

• Datasets require continuing maintenance. Data products based on a recent software
release are usually wanted (although older ones may also be useful to test backwards
compatibility).

These considerations aside, this WG does not make a specific recommendation about the
detailed layout of datasets, beyond noting the existence of the CommonDataset Organization
and Policy 24 which might form a convenient basis for further development.

24https://developer.lsst.io/services/datasets.html

23

https://developer.lsst.io/services/datasets.html

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

Regardless of the layout adopted, we expect that the dataset will need to evolve with time:
as new versions of the LSST code are released, expectations about both the contents of data
repositories and the format of persisted data products will change, occasionally in backwards-
incompatible ways. For a dataset to remain useful, active curation is required.

..

Recommendation

.

Each dataset should have an explicitly named product owner.
Product owners are responsible for ensuring that the content and use
cases of the datasets are well described and compatible with recent stack
versions. The owner of a dataset could often be a member of the team
with immediate use cases and knowledge of the relevant camera pack-
age.

The variety of different sources and use-cases for datasetsmeans that they span a wide range
of sizes. It is therefore impractical to store and distribute them all in the same way. Instead,
the QAWG suggests they can usefully be divided into two categories: small and large.

Small datasets are those smaller than 100GB in total size. They are intended for use, for
example:

• as input test data in CI jobs;
• as example data in documentation, demos, and tutorials.

We recommend that they are:

• packaged as EUPS products;
• made publicly available on GitHub;
• stored as Git LFS repositories as needed;
• versioned with DM software releases.

Large datasets are bigger than 100GB in total size. They are intended for use, for example:

• in large scale integration tests;
• in flushing out edge cases which may not be apparent from smaller data volumes;
• for archiving outputs from engineering facilities like the Camera test stands.

We recommend that they are:

24

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

• made available on project-provided shared network filesystems (i.e. GPFS);
• protected under a disaster recovery policy.

..

Recommendation

.

Datasets may be stored on either shared filesystems or Git LFS as appropriate,
depending on the total size of the dataset.

4.10 Standard format test packages

Derived from §3.3.

Analogously to various inconsistent forms of packaging datasets described in §4.9, we also
have a variety of different styles of packages which are fundamentally designed to perform
some form of integration testing: that is, executing a test suite which exercises multiple con-
stituent parts of the DM simultaneously. Broadly, we consider that these fall into one of two
categories:

1. Scons-based execution, including ci_hsc and ci_ctio0m9; or

2. Shell-script based, including validate_drp and ap_verify25.

Often packages of this type are designed for automatic execution within the Jenkins environ-
ment, typically on nightly timers, but we note that:

• Even for packages designed with Jenkins in mind, being able to run standalone is still
generally essential;

• We expect future integration tests to involve executing large-scale jobs which will run
on cluster-scale hardware at the Data Facility. Such jobs may be coordinated by Jenkins,
but will (likely) not run entirely on Jenkins build agents.

We consider that broadly the same benefits to adopting a consistent structure in these pack-
ages apply here as in §4.9. In particular, adopting a standardized design would enable:

25But note that this shell-script entry point may cover a variety of lower-level implementation details, such as
LSST-standard CmdLineTasks, Python scripts, or further shell scripting.

25

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

• Developers to make use of existing tests when developing new algorithms with minimal
overhead;

• New tests to be added without significant design work.

..

Recommendation

.

A standardized test package design should be developed which addresses all
existing use cases.
Existing test packages (lsst_dm_stack_demo, ci_hsc, validate_drp,
ap_verify, etc) should be adapted to the new design, and, where possible,
merged with each other.

Finally, we suggest that the existing variety of test packages reflects a lack of clarity and or-
thogonalization as to exactly what functionality can and should be tested in CI and on what
cadences.

..

Recommendation

.

A coherent plan for integration testing at all scales should be developed and
published.
Such a plan should then drive the development of the test package stan-
dard discussed above. Note DM-15348 in this context.

4.11 Metric collection & tracking

This section is derived from §§3.2 and 3.3.3.

We note that metrics describing pipeline execution may be considered in two separate — but
related — contexts. In some cases, we care simply about the absolute value of some metric:
is the performance “good enough”? Does it satisfy a requirement? In other circumstances, we
might wish to keep track of a metric value as a time series: does performance change with
time? Can we identify changesets which have introduced regressions (or improvements!)?

We note further that metrics values might be calculated in a number of different contexts.
For example:

26

https://jira.lsstcorp.org/browse/DM-15348

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

• Somemetrics refer to characteristics of pipeline execution, like execution time, which by
definition must be recorded during execution or they are lost26.

• Others may only be calculated from intermediate data products, which would not nor-
mally be stored for posterity. Thesemust be calculated before those intermediate prod-
ucts are removed.

• Finally, some are calculated from final science data products, and hence may be calcu-
lated at any time after pipeline execution.

4.11.1 Metric definition and calculation

The author of pipeline code can, of course, simply print to screen (or to log) a message con-
taining some quantity that they have calculated on the fly during the execution of their code.
This is low overhead and trivial to implement. It may be combined with the debugging system
(§4.1) to provide a rich set of diagnostics when the code is executing. We suggest that there is
no advantage to attempting to force some new framework onto developers operating in this
mode.

However, at the level of long-term monitoring of pipeline performance, and especially at the
level of requirements verification, we suggest that having a standardized, code-based defi-
nition of metrics is essential to enable clear and unambiguous comparison of results. The
SQuaRE team has developed the lsst.verify.metrics27 system to facilitate the centralised
definition of metrics, which we regard as a key step in the right direction.

..

Recommendation

.

Formalise the lsst.verify.metrics system as the source of truth for metric
definitions, by e.g. describing it in LDM-503 and LDM-639.
This should not be taken as a blanket endorsement of the current im-
plementation of this system; §4.11.1 provides a number of recommen-
dations as to the way that metrics are defined.

26Of course, it is not a requirement that they by recorded by a dedicated metric tracking system; one could
imagine recording execution time by simply recording a logmessage, and then later parsing log outputs to retrieve
it

27https://github.com/lsst/verify_metrics

27

https://github.com/lsst/verify_metrics

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

Provide a high-level overview and data-model describing the metric definition
system.
At present, the lack of material providing an overview of the system is a
significant barrier to entry. Although excellent API documentation is avail-
able, it is accompanied by references to technical notes describiing rela-
tively vaguely-specified design goals and referring to concepts like “prove-
nance” and “specification” which require further elucidation. A revision of
the documentation which expunges mention of old, obsolete packagesa

and provides a clear set of gettting-started guidelines should be unter-
taken. We suggest that that the SQuaRE group engage with one or more
stakeholders in the Pipelines while working on this material.

ae.g. lsst.validate.base

Many metrics are defined as statistical aggregates of a per-source computed quantity — for
example, FWHM or shape — over a defined selection of sources. In order to enable a low-
latency drill-down workflow and analyst flexibility, we recommend that for such metrics, the
per-source computations be calculated and stored for all sources, and that the selection and
aggregation steps be logically separate. For metrics computed in this way, the maximum
storage granularity should be considered to be at the source level.

..

Recommendation

.

The computation, selection, and aggregation steps that define ametric should
be well compartmentalized.

Other metrics may not be well-defined at the source level, such as the slope of the stellar
locus in a given color-color space, or other similar metrics that require fitting amodel tomany
sources at once. Such metrics cannot follow this same compute–select–aggregate model,
and will have a different maximum granularity (e.g., patch, tract, CCD, visit, or dataset). This
maximum granularity should be explicitly defined in the definition of the metric.

..

Recommendation

.

Metric values should be stored with full granularity (source, CCD, patch,
dataset).

28

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

Re-running pipelines to recompute metrics imposes a significant overhead to the analyst. We
therefore recommend that in general all computed metric values should be stored on disk at
the highest relevant granularity. In some cases these are per-source and may be included in
the relevant object catalogs or in post-processed tables; in others, the minimum granularity
may be at the CCD, patch, or even dataset levels. This procedure provides the analyst the
ability to filter metric values using arbitrary metadata (night, airmass, focal plane position,
moon phase, etc) and re-aggregate to any level desired with any aggregation function (mean,
median, percentiles, standard deviation, outliers, etc). Supplemental storage of higher-level
aggregates (e.g., mean FWHMby CCD) is discouraged because of duplication and loss of infor-
mation, except where speed of visualization of key quantities would be impaired due to the
need to load large datasets.

We note that this procedure will result in a substantial increase in catalog volume. We suggest
thatmetric value storage therefore be configurable through the regular pipeline configuration
system. Whenworking independently, developersmay enable or disable at will depending on
their use case; when running integration or other formalized tests, metrics will be stored for
later analysis; metric storage when performing alert or data release processing is an opera-
tional decision.

“Tidy data” (Wickham, 2014) is recommended as a best practice for data analysis workflows,
as it simplifies filter-groupby-aggregate workflows.

We expect that most analysts will be primarily interested in all values of a handful of metric
columns at once, which suggests a column-store format will be optimal. The potentially large
number of metrics and metric values argues for storage on-disk with the output repository
itself. This isolation also facilitates ad-hoc processing & QA workflows by individual analysts.

..

Recommendation

.

Metric values should be stored as “tidy data” in columnar data stores (e.g.,
Apache Parquet) as part an output data repository.
In particular, this should make it possible to load the data quickly enough
for interactive work on hundreds of tracts or an equivalent number of
visits.

Additionally, we note that in order for interactive tools to be useful for visualizing results of
large data repositories, the persistence model must allow for loading and aggregating metric

29

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

values at the scale of tens to hundreds of tracts with low latency. For example, if Parquet files
are used to store tables of metric values, it would be preferable for such tables to be stored
at the per-tract level instead of the per-patch level, to minimize I/O of small files when loading
multiple tracts of data at once.

In order to facilitate joining and filteringmetric values by othermetadata, metric values should
have appropriate Butler dataIds.

..

Recommendation

.
Metric values should have Butler dataIds.

As discussed in §4.11, the appropriate time to calculate a metric value may depend on the
nature of the metric. Some are calculated and stored in real-time as pipeline execution con-
tinues; othersmay be handled by “afterburner” analysis of existing data repositories. In either
case, we suggest that close integration with the Data Butler is essential, and we believe the
scheme presented here is compatible with the design of the “Generation Three” Butler.

..

Recommendation

.

It should be possible to use the Data Butler to persist and retrieve metric val-
ues.

4.11.2 Collecting metrics

The lsst.verify package enables the conveneient packaging of lsst.verify.metrics-style
metrics and their submission to the SQuaSH metric tracking dashboard (§4.11.3). We are
concerned that the adoption of this system has been slow. In part, we expect this to be ad-
dressed by impreovements to the definition of metrics, as discussed in §4.11.1. However, we
also believe that it is now appopriate for Pipelines leadership to begin to actively engage with
this system.

..

Recommendation

.

Develop clear guidelines for integrating metric collection with pipeline code.
DMTN-057 suggested a number of ways in which this might be done;
DMTN-098 and related work has begun development of a specific ap-
proach, which may evolve into an accepted standard.

30

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

Pipelines leadership should start using the metric definition and collection
system.
As the above recommendations aremet, this systemwill be usable. How-
ever, driving adoption will require proactive measures from pipelines
Product Owners and T/CAMs.

4.11.3 Metric tracking: dashboard and alerts

The SQuaSH system, SQR-009, has been developed by the SQuaRE team to provide “dash-
board” functionality for metric tracking. At its core, SQuaSH provides a database to which
metric values may be submitted using the lsst.verify (§4.11.2) system, and a web-based
service for displaying metric values as a time series. This enables the user to track the evolu-
tion of metric values with time, and relate them directly to changes in code or configuration.
SQuaSH has also been designed to provide some limited “drill-down” functionality to explore
the way in which high-level metrics have been calculated.

To date, SQuaSH has been used to follow a set of metrics derived from high-level LSST re-
quirements and codified in the validate_drp package. It has been designed, though, to enable
use by individual developers to track metrics which are of interest only to them, or relevant
to a particular subset of the codebase on which they are working.

The Working Group feels that the major value in the SQuaSH system is in tracking and re-
sponding to regressions in performance (be they scientific or run-time) as the code evolves.
In this respect, it is in some ways analogous to the CI system (§4.8), and benefits from many
of the same recommendations.

31

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

SQuaSH should issue alerts to developers and key stakeholders on regressions
in important metric values.
Key stakeholders should include:

• Senior DM management (DM Project Manager, DM Subsystem Sci-
entist, Pipelines Scientist, Science Pipelines T/CAMs and Science
Leads);

• The developer who caused the regression, if it is possible to identify
them (e.g. through commit logs).

This will require careful design, as it may be in tension with the desire to
enable developers to define arbitrary metrics for their own use: clearly,
key stakeholders will not wish to be informed of every developer-defined
metric which suffers a regression. We suggest that, for example, a “sub-
scription list” for each metric be defined, and the key stakeholders au-
tomatically be added to it for all metrics deriving directly from high-level
requirements.

As with lsst.verify, we worry that there is confusion about how to distinguish metric val-
ues measured on different versions of the codebase, configurations, datasets, etc within the
SQuaSH system. For example, it is possible to define and track a metric on an algorithm im-
plemented by code in the lsst.pipe.tasks package. But that code may be run in multiple
different contexts: as part of alert production, data release production, precovery, etc: how
does SQuaSH distinguish between all of these environments? We believe that SQuaSH is ca-
pable of this, but existing “big picture” documentation is lacking and hard to follow.

..

Recommendation

.

Provide a single, reliable source of documentation describing the SQuaSH sys-
tem and a vision for its use in DM-wide metric tracking.

We note that SQuaSH provides some drill-down capability to explore the source of metric val-
ues. We suggest that this should not be the core business of SQuaSH, and prefer to consider
a separate drill-down environment (§4.12); further development of these capabilities within

32

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

SQuaSH should not be prioritised. However, if the metric submission system captures appro-
priate information, it would be desirable to enable SQuaSH to automatically spawn a copy of
the drill-down system pointing at the repository corresponding to a particular metric value
submission.

..

Recommendation

.

The SQuaSH system should be closely coupled to the drill-down environment;
in particular, the former should use the latter to enable drill-down function-
ality into particular metric values..

We recognize that developersmaywish to submit results to SQuaSH froma variety of systems.
In particular, itmust not be dependent upon a particular execution environment (e.g. Jenkins).

..

Recommendation

.

It must be possible to submit metrics to SQuaSH from arbitrary pipeline exe-
cution environments.

When handling large datasets, there is value to tracking metric values computed over subsets
of the whole. For example, it may be more relevant to track how photometric repeatability
varies over some patch, rather than over the whole sky.

..

Recommendation

.

SQuaSH should be able to store and display appropriate metric values per
DataId.
For example, CCD, visit, patch, tract, filter.

4.12 Drill-down workflows

Currently, pipeline developers rely on a variety of ad-hoc visualization tools and customwork-
flows to debug processing problems and investigate the effects of new algorithms. TheQAWG
recommends development of a browser-based dashboardQA system that is designed to cater
to the workflow of the debugging developer, and is informed and guided by current usage of
existing tools (e.g. pipe_analysis and qa_explorer). This is separate from, and in addition to,
the SQuaSH dashboard (§4.11.3).

33

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

DM should develop a browser-based interactive dashboard that can run on
any pipeline output repository (or comparison of two repositories) to quickly
diagnose the quality of the data processing.
This dashboard should have two levels of detail: a high-level summary
of top-level global metrics (Fig. 1), and and a metric view showing more
information on a selected metric (or set of metrics; Fig. 2). The more
detailed metric dashboard should be able to explore both coadds and
individual visits.

Figure 1: Mock-up of the “quick look” overview screen of the drill-down system. This pro-
vides a summary of all metrics calculated over the results of a particular pipeline execution,
indicating any that fell below threshold.

34

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

A developer will load the dashboard by visiting a particular URL. They will then enter the path
to a data repository28 which contains metric values. They will be presented with the “quick
look” screen as shown in Fig. 1 which summarizes the results of the data processing.

The dashboard will generate summary information on the fly by introspecting the repository.
It follows that, in addition to the metric values themselves, the repository will also contain
metadata that describes:

• Which metrics were computed?

• What selection was done on the source catalog to compute each metric?

• What is an acceptable value for each metric for this particular data set?

The developer will have a choice to explore either the metrics in a single repository, or the
differences inmetrics between two data repositories by entering a “comparison repository” in
addition to the primary one (that necessarily would need to have the samemetrics computed
as the primary).

The high-level landing page of this dashboard should allow for an at-a-glance summary of
the data and identification of any problems. The overall data summary could be in a header
displaying the numbers of interest, such as number of tracts, numbers of visits per filter, total
numbers of sources, etc. At-a-glance identification of problems could be accomplished by
displaying fully-rolled-upmetric summary values in a minimalist but informative format, such
as an array of color-coded buttons or a color-coded table (e.g., green for good, red for bad).
This top-level dashboard page should also have minimal but useful visualizations, such as an
RA/Dec plot of a single metric value (perhaps switchable via drop-down menu).

Selecting any metric from the top-level page should load up a metric-detail page, as shown in
Fig. 2, which should allow formore detailed exploration of an individualmetric. The layout and
function of this page will depend on the type of metric. As an example, for metrics derived
directly from individual source measurements, it might display a scatter plot of the metric
values vs. source magnitude, as well as an RA/Dec scatter plot colormapped by metric value.
This could by default show the data for all tracts, but tract-aggregated information could be
available for each tract on hovering over the sky map. Upon clicking upon a specific tract,
then only the points for that tract will be selected (both in sky plot and scatter plot), and the

28On some accessible filesystem; this assumes that the QA system is running e.g. on a host at the LSST Data
Facility with access to /scratch or /project

35

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

Figure 2: Mock-up of the “metric view” showingmore information on how a particularmetric
value was calculated.

sky plot would then display patch-summarized data. Similarly, from here, clicking on a patch
would load up just the data in that patch.

This metric dashboard should also allow simultaneous visualization of different metrics, to
allow cross-filtering. This might be accomplished, for example, by having a sidebar listing the
metrics, and being able to use it to either switch betweenmetrics or to select multiplemetrics.

There should be an analogous drill-down mode for exploring visit-level data, with the drill-
down levels being visit→CCD rather than tract→patch. There should be seamless integration
between coadd and visit mode, to match the typical workflow of a debugging developer, who
will first see that there is a problem with a particular metric in a particular tract at the coadd
processing level, and then will want to see what visits went into that coadd tract. To enable
this, from the “coadd mode” metric dashboard, there could be a way to toggle on/off visit
outlines, and to jump to “visit mode” for a selected visit. In “visit mode,” in addition to the
scatter/sky plots that “coadd mode” has, there could be an additional figure showing the ag-
gregated metric value as a function of visit number, where outlier visits would be clearly visi-
ble. This systemwould enable a developer to quickly identify bad visits for a particular metric,
in just a few clicks.

36

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

..

Recommendation

.

The dashboard should enable the analyst to start a Jupyter notebook session
with the relevant datasets already loaded.

From the metric dashboard, there could be an “explore in Jupyter” button that would load
up the dataset in the JupyterLab environment, which would provide all the tools to make
the dashboard visualizations, with the additional flexibility for ad-hoc exploration that the
notebook provides.

5 Conclusion

This document has described the deliberations and conclusions of the QA Working Group. It
has taken a wide-ranging view over various aspects of the DM Subsystem, and presented a
wide range of recommendations, which are summarised in Appendix A. Many of these recom-
mendations are evolutionary improvements to existingDM tools, practices or documentation.
A few involve the development of new capabilities. Of particular note in this latter capability
are the call for the development of a integrated drill-down system, described in §4.12, and
for adoption of the Dask system §4.429. These capabilities will require significant resources
to deliver, and will therefore require action by DM Project Management. However, we also
commend tomanagement some of the lower-profile recommendations: in particular, we feel
that modest improvements to dataset organization and to the CI system could have major
impacts on DM’s overall productivity.

A Recommendations

QAWG-REC-1: Adopt the definitions ofQA-related terms in theDMTN-085 glossary subsystem-
wide (§1)

QAWG-REC-2: Develop anewpipeline instrumentation anddebugging system, replacing lsst-
Debug (§4.1)

QAWG-REC-3: Guidelines for the effective use of the pipeline debugging system should be
supplied to developers (§4.1)

29We note that, at time of writing, some work involving Dask is now underway within DM, although we are not
aware of design documentation describing exactly what capabilities will be provided.

37

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

QAWG-REC-4: Debugging mode should be binary: it is either enabled or disabled, with no
further configuration (§4.1)

QAWG-REC-5: A log aggregation and monitoring service should be provided for large-scale
processing jobs at the Data Facility (§4.2)

QAWG-REC-6: Tutorial and reference documentation for developers attempting to run jobs
at scale should be refreshed (§4.3)

QAWG-REC-7: DM should formally adopt the PyViz ecosystem (§4.4.1)

QAWG-REC-8: DM should adopt Dask to enable users to work with larger than memory data
(§4.4.1)

QAWG-REC-9: DM should provide clear, written guidance to developers about the availability,
status and expected usage of image display tools (§4.4.2)

QAWG-REC-10: The design and implementation of the provenance system should have high
priority in the project scheduling (§4.5)

QAWG-REC-11: Obsolete and unclear sections of the Developer Guide should be rewritten to
provide clearer guidance on unit tests (§4.6.1)

QAWG-REC-12: The Developer Guide should be expanded to provide checklist-style documen-
tation for code reviewers making clear what is expected from them during the
review (§4.6.2)

QAWG-REC-13: Provide a central location where examples, scripts and utilities which are not
fundamental to pipeline execution are indexed and made discoverable (§4.7)

QAWG-REC-14: The Project should adopt a documented (in the Developer Guide) policy on the
maintenance of example code (§4.7)

QAWG-REC-15: TheProject should prioritize the development of a documentation systemwhich
makes it convenient to include code examples and that tests those examples
as part of a documentation build (§4.7)

QAWG-REC-16: When running regularly scheduled (timer) jobs on the master branch of any
releasable product, any build failure should be announced prominently to key
stakeholders (§4.8.1)

QAWG-REC-17: The Developer Guide should provide guidance about expected responses to
Jenkins failures (§4.8.1)

QAWG-REC-18: The versions of external packages used in the Jenkins systemmust always cor-
respond to the minimum versions specified in stub packages and/or in the
document list of prerequisites (§4.8.2)

38

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

QAWG-REC-19: The project should adopt a single source of dependency information and ver-
sions (§4.8.2)

QAWG-REC-20: A standardized format for dataset repositories should be adopted across DM
(§4.9)

QAWG-REC-21: Each dataset should have an explicitly named product owner (§4.9)

QAWG-REC-22: Datasets may be stored on either shared filesystems or Git LFS as appropriate,
depending on the total size of the dataset (§4.9)

QAWG-REC-23: A standardized test package design should be developed which addresses all
existing use cases (§4.10)

QAWG-REC-24: A coherent plan for integration testing at all scales should be developed and
published (§4.10)

QAWG-REC-25: Formalise the lsst.verify.metrics system as the source of truth for metric
definitions, by e.g. describing it in LDM-503 and LDM-639 (§4.11.1)

QAWG-REC-26: Provide a high-level overview and data-model describing the metric definition
system (§4.11.1)

QAWG-REC-27: The computation, selection, and aggregation steps that define ametric should
be well compartmentalized (§4.11.1)

QAWG-REC-28: Metric values should be storedwith full granularity (source, CCD, patch, dataset)
(§4.11.1)

QAWG-REC-29: Metric values should be stored as “tidy data” in columnar data stores (e.g.,
Apache Parquet) as part an output data repository (§4.11.1)

QAWG-REC-30: Metric values should have Butler dataIds (§4.11.1)

QAWG-REC-31: It should bepossible to use theData Butler to persist and retrievemetric values
(§4.11.1)

QAWG-REC-32: Develop clear guidelines for integrating metric collection with pipeline code
(§4.11.2)

QAWG-REC-33: Pipelines leadership should start using themetric definition and collection sys-
tem (§4.11.2)

QAWG-REC-34: SQuaSH should issue alerts to developers and key stakeholders on regressions
in important metric values (§4.11.3)

QAWG-REC-35: Provide a single, reliable source of documentation describing the SQuaSH sys-
tem and a vision for its use in DM-wide metric tracking (§4.11.3)

39

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

QAWG-REC-36: The SQuaSH system should be closely coupled to the drill-down environment;
in particular, the former should use the latter to enable drill-down functionality
into particular metric values. (§4.11.3)

QAWG-REC-37: It must be possible to submit metrics to SQuaSH from arbitrary pipeline exe-
cution environments (§4.11.3)

QAWG-REC-38: SQuaSH should be able to store and display appropriate metric values per
DataId (§4.11.3)

QAWG-REC-39: DM should develop a browser-based interactive dashboard that can run on
any pipeline output repository (or comparison of two repositories) to quickly
diagnose the quality of the data processing (§4.12)

QAWG-REC-40: The dashboard should enable the analyst to start a Jupyter notebook session
with the relevant datasets already loaded (§4.12)

B Glossary
aggregate metric An aggregation of multiple point metrics. For example, the overall photo-

metric repeatability for a particular tract given multiple observations of each star.
aggregation A single result—e.g., ametric value—computed from a collection of input values.

For example, we can sum or average a metric computed over patches to produce an
aggregate metric at tract level.

Apache Parquet A columnar storage data persistence format maintained by the Apache
project; http://parquet.apache.org.

CI Continuous Integration.
dashboard A visual display of themost important information needed to achieve one ormore

objectives, consolidated and arranged on a single screen so that the information can
be monitored at a glance (Few, 2013).

DM Data Management.
drill down Move from a higher level aggregation of data to its inputs. For example, given

data describing a tract, we might drill down to constituent patches and then to ob-
jects; given a visit, we might drill down to CCD and then source. In the context of this
document, it refers to the act of identifying an issue in a high-level summary of the
data (e.g. an aberrant metric value) and interactively investigating its inputs to find
the source of the problem.

GPFS IBM’s General Parallel File System; now known as IBM Spectrum Scale. In DM use, this
is taken to mean bulk data storage provided through a POSIX filesystem interface at

40

http://parquet.apache.org

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

the LSST Data Facility.
HSC Hyper Suprime-Cam.
KPM Key Performance Metric.
LDF LSST Data Facility.
metricWe follow the SQR-019 definition of ametric as ameasurable quantities whichmay be

tracked. A metric has a name, description, unit, references, and tags (which are used
for grouping). A metric is a scalar by definition. We consider multiple types of metric
in this document; see aggregate metric, model metric, point metric.

metric value The result of computing a particular metric on some given data. Note that we
compute, rather than measure, metric values.

model metric A metric describing a model related to the data. For example, the coefficients
of a 2D polynomial fit to the background of a single CCD exposure.

monitoring The process of collecting, storing, aggregating and visualizing metrics.
point metric A metric that is associated with a single entry in a catalog. Examples include

the shape of a source, the standard deviation of the flux of an object detected on a
coadd, the flux of an source detected on a difference image.

provenance A description of the inputs and processes which have been used to generate a
particular result or data product.

QA Quality Assurance. For the purposes of this document, we take QA to describe all activi-
ties, deliverables, services, documents, procedures or artifacts which are designed to
ensure the quality of DM deliverables. This may include QC systems, in so far as they
are covered in the charge described in §1 and LDM-622. Note that contrasts with the
LDM-522 definition of “QA” as “Quality Analysis”, a manual process which occurs only
during commissioning and operations.

QAWG QA Strategy Working Group.
QCQuality Control. Following LDM-522, QC describes services and processeswhich are aimed

at measuring and monitoring a system to verify and characterize its performance.
QC systems run autonomously, only notifying people when an anomaly has been de-
tected. Contrast QA.

releaseable product A software package or other component of the DM system which is
expected to be included in the next tagged release of the system. At time of writing,
this implies inclusion in a standard top-level package (e.g. lsst_distrib), but we note
that future changes to the release procedure may render that definition obsolete.

SDQA Science Data Quality Assurance.
SQuaSH Science Quality Analysis Harness; SQR-009; https://squash.lsst.codes.
tidy data Tidy datasets have a specific structure: each variable is a column, each observation

41

https://squash.lsst.codes

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

is a row, and each type of observational unit is a table (Wickham, 2014).

References

[DMTN-085], Bellm, E., Chiang, H.F., Fausti, A., et al., 2018, QA Strategy Working Group Report,
DMTN-085, URL https://dmtn-085.lsst.io,
LSST Data Management Technical Note

[LDM-556], Dubois-Felsmann, G., Jenness, T., Bosch, J., et al., 2018, Data Management Middle-
ware Requirements, LDM-556, URL https://ls.st/LDM-556

[LDM-522], Economou, F., Wood-Vasey, M., 2017, DM Science Quality Data Assurance System
Conceptual Design, LDM-522, URL https://ls.st/LDM-522

[SQR-009], Fausti, A., 2017, The SQuaSH metrics dashboard, SQR-009, URL https://sqr-009.

lsst.io

Few, S., 2013, Information Dashboard Design, Analytics Press, 2 edn.

[DMTN-057], Findeisen, K., 2017, Integrating Verification Metrics into the LSST DM Stack, DMTN-
057, URL https://dmtn-057.lsst.io,
LSST Data Management Technical Note

[DMTN-098], Findeisen, K., 2018, Metrics Measurement Framework Design, DMTN-098, URL
https://dmtn-098.lsst.io,
LSST Data Management Technical Note

[LDM-635], Gower, M., Butler, M., Lim, K.T., 2018, Data Management Data Backbone Services
Requirements, LDM-635, URL https://ls.st/LDM-635

[LDM-639], Guy, L., 2018, DM Acceptance Test Specification, LDM-639, URL https://ls.st/

LDM-639

LSST Data Management, LSST DM Developer Guide, URL https://developer.lsst.io/

[DMTN-096], O’Mullane, W., Swinbank, J., Guy, L., 2018, Implementation and impacts of DM
scope options, DMTN-096, URL https://dmtn-096.lsst.io,
LSST Data Management Technical Note

[LDM-503], O’Mullane, W., Swinbank, J., Jurić, M., Economou, F., 2018, Data Management Test
Plan, LDM-503, URL https://ls.st/LDM-503

42

https://dmtn-085.lsst.io
https://ls.st/LDM-556
https://ls.st/LDM-522
https://sqr-009.lsst.io
https://sqr-009.lsst.io
https://dmtn-057.lsst.io
https://dmtn-098.lsst.io
https://ls.st/LDM-635
https://ls.st/LDM-639
https://ls.st/LDM-639
https://developer.lsst.io/
https://dmtn-096.lsst.io
https://ls.st/LDM-503

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2019-01-24

[SQR-019], Sick, J., Fausti, A., 2018, LSST Verification Framework API Demonstration, SQR-019,
URL https://sqr-019.lsst.io

[LDM-622], Swinbank, J., 2018, Data Management QA Strategy Working Group Charge, LDM-622,
URL https://ls.st/LDM-622

Wickham, H., 2014, Journal of Statistical Software, Articles, 59, 1, URL https://www.jstatsoft.

org/v059/i10, doi:10.18637/jss.v059.i10

43

https://sqr-019.lsst.io
https://ls.st/LDM-622
https://www.jstatsoft.org/v059/i10
https://www.jstatsoft.org/v059/i10
http://doi.org/10.18637/jss.v059.i10

	Introduction
	Approach to the Problem
	Pipeline debugging
	Drill down
	Datasets and test infrastructure

	Design sketch
	Pipeline debugging
	Drill down
	Datasets and test infrastructure
	Small-scale unit and documentation tests
	Integration tests
	Metric and performance tracking

	Core components
	Updated pipeline debugging system
	Logging
	Workload management system
	Visualization
	Catalog visualization
	Image visualization

	Provenance
	Code quality documentation
	Unit tests
	Code review

	Documentation and examples
	CI system updates
	Notifications and failures
	Execution environment

	Standard format dataset packages
	Standard format test packages
	Metric collection & tracking
	Metric definition and calculation
	Collecting metrics
	Metric tracking: dashboard and alerts

	Drill-down workflows

	Conclusion
	Recommendations
	Glossary

