
Draf
t

Large Synoptic Survey Telescope (LSST)

QA Strategy Working Group Report

Bellm, E.C., Chiang, H.-F., Fausti, A., Krughoff, K.S., MacArthur,
L.A., Morton, T.D., Swinbank, J.D and Roby, T.

DMTN-085

Latest Revision: 2018-07-10

D R A F T

Abstract

Abstract.

LARGE SYNOPTIC SURVEY TELESCOPE

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

Change Record

Version Date Description Owner name
0478737 2018-07-10 Unreleased draft. Bellm et al.

D R A F T ii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

Contents

1 Introduction 1

2 Approach to the Problem 2

2.1 Pipeline debugging . 2

2.2 Drill down . 3

2.3 Datasets and test infrastructure . 4

3 Design sketch 4

3.1 Pipeline debugging . 4

3.1.1 A pipeline is segfaulting . 4

3.1.2 A pipeline is throwing an exception . 5

3.1.3 A Continuous Integration (CI) run shows a regression in a metric value . 5

3.2 Drill down . 5

3.2.1 Metric computation and persistence . 6

3.2.2 Drill-down workflows and display . 7

3.2.3 Automated regression testing . 10

3.3 Datasets and test infrastructure . 10

4 Core components 11

4.1 Updated pipeline debugging system . 11

4.2 Logging . 11

4.3 Capability for developers to run pipelines at scale 12

4.4 Guidance on visualization . 12

4.5 Image viewer . 13

4.6 Catalog visualization tools . 15

4.7 Provenance . 15

4.8 Documentation content updates . 16

4.9 Testing for documentation . 17

4.10 CI system updates . 17

4.11 Metrics Dashboard / SQuaSH . 18

D R A F T iii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

4.12 Standard format dataset package . 19

4.13 Standard test package design . 21

A Glossary 22

D R A F T iv D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

QA Strategy Working Group Report

1 Introduction

..

Assignee

.
John

This report constitutes the primary artefact produced by the DM QA Strategy Working Group
(QAWG), addressing its charge as defined in LDM-622.

The complete scope of “Quality Assurance (QA) within Data Management (DM)” is too large
to be coherently addressed by any group on a limited timescale. Per its charge, then, the
QAWG has constrained itself to considering only those aspects of QA which are most directly
relevant to the construction of the LSST Science Pipelines. In particular, we have considered
the tools which developers need to construct and debug individual algorithms; tools which
can be used to investigate the execution of at-scale pipeline runs; and tools which can be
used to demonstrate that the overall system meets its requirements (to “verify” the system).
This deliberately excludes broader requirements of Commissioning, Science Validation, or
run-time Science Data Quality Assurance (SDQA)1.

This report consists broadly of three parts. In §2, we describe the approach that the QAWG
took to addressing its charge. In §3, we present a high-level overview of the systems that we
envisage the future DM comprising. Finally, In §4 we identify specific components — which
maybepieces of software, documentation, procedures, or other artifacts— that should bede-
veloped to enable the capabilities we regard as necessary. In some cases, these components
may be entirely new developments; in others, existing tools developed by the DM subsystem
may already be fit for purpose, or can be adapted with some effort. We have noted when this
is the case.

Finall,y in Appendix A we define a number of key terms which are used throughout this report
and which we we suggest be adopted throughout DM to provide an unambigous vocabulary
for referring to QA topics.

1Effectively, code executed during prompt or data release production processing to demonstrate that the data
being both ingested and released is of adequate quality.

D R A F T 1 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

2 Approach to the Problem

..

Assignee

.
John

The QAWG addressed its charge by sub-dividing the problem space into three separate areas:

• Addressing the needs of developers writing and debugging algorithms on the small
scale;

• Developing tooling to address the drill down use case;

• Providing the infrastructure needed to support automatic testing and verification.

Each of these areas were assigned to a separate sub-group within the WG for brainstorm-
ing and developing approaches, with each sub-group regularly reporting progress to overall
working group meetings.

When each sub-group had developed a strong concept for the tooling needed to address
their particular part of the charge, the whole working group reviewed each design in detail,
identifying and developing specifications for common components or activities that enable
one or more of the designs.

In §§2.1, 2.2 and 2.3, we provide details about the charge provided to each sub-group.

2.1 Pipeline debugging

..

Assignee

.
John

What tools do we need to help pipeline developers with their every-day work? Specifically:

• How do you go about debugging a Task that is crashing?

• Is lsstDebug adequate?

• Do we need an afwFigure, for generating plots, to go alongside afwDisplay, for showing
images?

D R A F T 2 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

• What additional capabilities are needed for developers running and debugging at scale,
e.g. log collection, identification of failed jobs, etc.

• What’s needed froman image viewer for pipeline developers? Is DS9 or Firefly adequate?
Is there value to the afwDisplay abstraction layer, or does it simply make it harder for us
to use Firefly’s advanced features?

• How do we view images which don’t fit in memory on a single node?

• How do we handle fake sources? Is this a provenance issue?

2.2 Drill down

..

Assignee

.
John

How can we provide developers and testers with the ability to “drill down” from high level ag-
gregated metrics to explore the source data and intermediate data products that contributed
to them? Specifically:

• What sort of metrics should be extracted from running pipelines2?

• How can those metrics be displayed on a dashboard? Is a simple time-series adequate,
or do we need other types of plotting?

• By what mechanism can the user drill-down from those aggregated metrics to identify
the sources of problems? Do they click through pre-generated plots, or jump straight
into a notebook environment?

• Assuming the user ends up in an interactive environment, what are its capabilities?

• What do the above tell us about the data products that pipelines need to persist (both
in terms of metrics that are posted to SQuaSH, and regular pipeline outputs, Parquet
tables, HDF5 files, etc)?

2Scalars, vectors, spatially binned quantities, etc.

D R A F T 3 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

2.3 Datasets and test infrastructure

..

Assignee

.
John

What infrastructure must we make available to enable testing and verification of the DM sys-
tem? Specifically:

• Are any changes needed to the way that DM currently handles unit testing?

• How are datasets made available to developers? Git LFS repositories? GPFS?

• What is the appropriate cadence for running small/medium/large scale integration tests
and reprocessing of known data?

• How is the system for tracking metrics managed? — how are the metric calculation jobs
run? By whom? How often?

• How run-time performance of the science algorithms be tracked?

3 Design sketch

3.1 Pipeline debugging

..

Assignee

.
John

The group considering the requirements of Science Pipelines developers for debugging ex-
plored a number of avenues to make developers lives easier. In doing, so they identified a
number of areas in which current systems could be improved to boost both productivity and
developer morale.

In particular, they considered three separate scenarios in which developers will require sup-
port.

3.1.1 A pipeline is segfaulting

We considered the following:

D R A F T 4 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

• A pipeline is failing with a segfault;

• A developer recompiles the failing code with no optimization;

• The unoptimized code is run through a memory analysis tool3;

• This gives some possible locations where arrays are being overrun;

• The unoptimized code is run under GDB;

• This includes the need to start in PDB and attach GDB when the process enters the
compiled C++ code;

• Using the debugging utilities, the dev finds where the array is being overrun.

3.1.2 A pipeline is throwing an exception

3.1.3 A CI run shows a regression in a metric value

3.2 Drill down

..

Assignee

.
Tim

Drill-down workflows center on the need to quickly and efficiently identify data processing
problems. Typically these will be identified from discrepancies identified at higher levels of
summary and aggregation. We emphasize the importance of ease-of-use for the QA analyst
in order to shorten debugging cycles. Key capabilities include:

• Rapid retrieval of relevant quantities (metric values, image cutouts, catalog overlays,
etc.),

• Readily-(re)configurable interactive plotting tools supporting a developer-orientedbrowser-
based dashboard,

• Automated regression testing.

The system implementing these capabilitiesmust be able to handle large datasets easily, such
as, e.g., an entire HSC public data release.

3e.g. Valgind.

D R A F T 5 D R A F T

https://www.gnu.org/software/gdb/
https://docs.python.org/3/library/pdb.html
http://valgrind.org

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

3.2.1 Metric computation and persistence

..

Recommendation

.

The computation, selection, and aggregation steps that define a
metric should be well compartmentalized.

Many metrics are defined as statistical aggregates of a per-source computed quantity over a
defined selection of sources. In order to enable a low-latency drill-downworkflow and analyst
flexibility, we recommend that for such metrics, the per-source computations be calculated
and stored for all sources, and that the selection and aggregation steps be logically seperate.
This might be implemented, for example, by giving a Metric object separate .compute(), .se-
lect() and .aggregate() methods. For metrics computed in this way, the maximum storage
granularity (§3.2.1) should be considered to be at the source level.

Other metrics may not be well-defined at the source level, such as the slope of the stellar
locus in a given color-color space, or other similar metrics that require fitting amodel tomany
sources at once. Such metrics cannot follow this same .compute()–.select()–.aggregate()
model, and will have a different maximum granularity (e.g., patch, tract, ccd, visit, or dataset).
This maximum granularity should be explictly defined in the definition of the metric.

..

Recommendation

.

Metric values should be storedwith full granularity (source, CCD,
patch, dataset).

Re-running pipelines to recompute metrics imposes a significant overhead to the analyst. We
therefore recommend that in general all computed metric values should be stored on disk
at the highest relevant granularity. In some cases these are per-source (e.g., source FWHM
or shape measurements) and may be included in the relevant object catalogs or in postpro-
cessed tables; in others, the minimum granularity may be at the CCD, patch, or even dataset
levels (§3.2.1). This procedure provides the analyst the ability to filter metric values using ar-
bitrarymetadata (night, airmass, focal plane position, moon phase...) and re-aggregate to any
level desired with any aggregation function (mean, median, percentiles, standard deviation,
outliers...). Supplemental storage of higher-level aggregates (e.g., mean FWHM by CCD) is dis-
couraged because of duplication and loss of information, except where speed of visualization
of key quantities would be impaired due to the need to load large datasets.

D R A F T 6 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

..

Recommendation

.

Metric values should be stored as “tidy data” in columnar data
stores (e.g., Parquet) on disk with the output data repository,
in such a way that the data can be loaded quickly enough for
interactive work on ∼100s of tracts.

“Tidy data” (Wickham, 2014) is recommended as a best practice for data analysis workflows,
as it simplifies filter-groupby-aggregate workflows.

We expect that most analysts will be primarily interested in all values of a handful of metric
columns at once, which suggests a column-store format will be optimal. The potentially large
number of metrics and metric values argues for storage on-disk with the output repository
itself. This isolation also facilitates ad-hoc processing & QA workflows by individual analysts.
We also recommend a centralized system for tracking performance regressions at a high level
(§3.2.3).

Additionally, we also note that in order for interactive tools to be useful for visualizing results
of large data repositories, the persistencemodel must allow for loading and aggregating met-
ric values at the scale of 10s to 100s of tracts with low latency. For example, if parquet files
are used to store tables of metric values, it would be preferable for such tables to be stored
at the per-tract level instead of the per-patch level, to minimize lots of I/O of small files when
loading multiple tracts of data at once.

..

Recommendation

.
Metric values should have Butler dataIds.

In order to facilitate joining and filteringmetric values by othermetadata, metric values should
have appropriate Butler dataIds.

..

Recommendation

.

We should be able to use the Butler interface to persist and re-
trieve metric values.

3.2.2 Drill-down workflows and display

Currently, pipeline developers rely on a variety of ad-hoc visualization tools and customwork-
flows to debug processing problems and investigate the effects of new algorithms. TheQAWG

D R A F T 7 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

recommends development of a browser-based dashboardQA system that is designed to cater
to the workflow of the debugging developer, and is informed and guided by current usage of
existing tools (e.g. pipe_analysis and qa_explorer). This is separate from, and in addition to,
the SQuaSH dashboard (§4.11).

..

Recommendation

.

The QA system should supply a browser-based interactive dash-
board that can run on any pipeline output repository (or com-
parison of two repositories) to quickly diagnose the quality of
the data processing. This dashboard should have two levels
of detail: a high-level dashboard summarizing top-level global
metrics, and and a metric dashboard showing more informa-
tion on a selected metric (or set of metrics). The more detailed
metric dashboard should be able to explore both coadds and
inidivual visits.

A developer should be able to navigate a web browser to a URL, enter the path to a data
repository at the LDF onwhich ametric-computing postprocessing task has been run (e.g., on-
disk at NCSA in \scratch or \project), and see an dashboard summarizing the data processing.
In addition to computing and persisting the values of these metrics, this task also will have
persisted enough information about the metric computations such that the dashboard can
read the following from the repository:

• Which metrics were computed?

• What selection was done on the source catalog to compute each metric?

• What is an acceptable value for each metric for this particular data set?

The developer should have a choice to explore either the metrics in a single repository, or the
differences in metrics between two data repositories by entring a “comparison repository” in
addition to the primary one (that necessarily would need to have the samemetrics computed
as the primary).

The high-level landing page of this dashboard should allow for at-a-glance summary of the
data and identification of any problems. The overall data summary could be in a header
displaying the some numbers of interest, such as number of tracts, numbers of visits per filter,

D R A F T 8 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

total numbers of sources, etc. At-a-glance identification of problems could be accomplished
by displaying fully-rolled-up metric summary values in a minimalistic but informative format,
such as an array of color-coded buttons or a color-coded table (e.g., green for good, red for
bad). This top-level dashboard page should also have minimal but useful visualizations, such
as an RA/dec plot of a single metric value (perhaps switchable via drop-down menu).

Clicking on any metric from the top-level page should load up a coadd metric-detail dash-
board, which should allow for more detailed exploration of an individual metric. The layout
and function of this pagewill depend on the type ofmetric. As an example, formetrics derived
directly from individual sourcemeasurements, it might display a scatter plot of themetric val-
ues vs. sourcemagnitude, as well as an RA/Dec scatter plot colormapped bymetric value. This
could by default show the data for all tracts, but tract-aggregated information could be avail-
able for each tract on hovering over the sky map. Upon clicking upon a specific tract, then
only the points for that tract will be selected (both in sky plot and scatter plot), and then the
sky plot would then display patch-summarized data. Similarly, from here, clicking on a patch
would load up just the data in that patch.

This metric dashboard should also allow simulataneous visualization of different metrics, to
allow cross-filtering. This might be accomplished, for example, by having a sidebar listing the
metrics, and being able to use it to either switch betweenmetrics or to select multiplemetrics.

There should be an analogous drill-down mode for exploring visit-level data, with the drill-
down levels being visit->ccd rather than tract->patch. There should be seamless integration
between coadd and visit mode, to match the typical workflow of a debugging developer, who
will first see that there is a problem with a particular metric in a particular tract at the coadd
processing level, and then will want to see what visits went into that coadd tract. To enable
this, from the “coadd mode” metric dashboard, there could be a way to toggle on/off visit
outlines, and to jump to “visit mode” for a selected visit. In “visit mode,” in addition to the
scatter/sky plots that “coadd mode” has, there could be an additional figure showing the ag-
gregated metric value as a function of visit number, where outlier visits would be clearly visi-
ble. This systemwould enable a developer to quickly identify bad visits for a particular metric,
in just a few clicks.

..

Recommendation

.

The dashboard should enable the analyst to start a Jupyter note-
book session with the relevant datasets already loaded.

D R A F T 9 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

From the metric dashboard, there could be an “explore in Jupyter” button that would load up
the dataset in the Jupyterlab environment, whichwould provide all the tools tomake the dash-
board visualizations, with the additional flexibility for ad-hoc exploration that the notebook
provides.

3.2.3 Automated regression testing

..

Recommendation

.

In addition to the repository-level dashboard QA system hereto-
fore discussed, a centralized service should store and plot
high-level aggregations of key performance metrics on sev-
eral datasets that are regularly reprocessed in order to iden-
tify performance regressions or improvements due to pipeline
changes.

This is essentially the SQuaSH system, discussed in more detail in 4.11. The high-level aggre-
gates that SQuaSH uses may be constructed and submitted by an afterburner task that uses
the per-repository metric storage.

..

Recommendation

.

An analyst should be able to start an interactive drill-down ses-
sion exploring the output repository in question in “one click”
from any given aggregate displayed by the SQuaSH system.

This defines the relationship between the QA dashboard and SQuaSH. The QA dashboard
can point to any data repository on disk in which metrics have been calculated, and does not
have to relate to the centralized SQuaSH system in any way. But a developer must be able to
access this dashboard in two equivalent ways: either by navigating straight to the dashboard
URL and entering the path to a repository, or by beginning at the SQuaSH dashboard, and
clicking on a point representing a given pipeline run.

3.3 Datasets and test infrastructure

..

Assignee

.
John

D R A F T 10 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

4 Core components

4.1 Updated pipeline debugging system

..

Assignee

.
Simon

The debugging system must be both reasonably powerful and easy to use. It should also
be obvious from help/doc strings how to turn on debugging. There is a tradeoff between
granularity and usability.

The recommendation is that the debugging system be simplified to be configurable at the
task level. Debugging is turned on via a config parameter. This allows for single sub-tasks to
turn on debugging independently. In practice this means that statements like if lsstDebug:

would turn into if self.config.debug.

This brings up theobvious issue that free functions/non-taskmethods called in the runmethod
of a task do not necessarily have the debugging flag passed into them. It becomes the respon-
sibility of the implementer to pass self.config.debug into methods that have debug function-
ality.

Derived from §3.1.

i.e. redesigned lsstDebug.

4.2 Logging

..

Assignee

.
Simon

Logging is an important aspect of running large data processing. It is also integral to quality
assessment as the logging information provides important contextual information when in-
specting data for quality issues. Specifically, log messages presenting information about the
processing: e.g. PSF width, number of stars used in a model fit, can indicate problems with
the algorithmic behavior or input data. Logging also provides information about potential
causes for unexpected termination including exit codes and exeptions.

D R A F T 11 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

While logs can be straightforward to parse when only a small number of concurrent processes
are being used, they quickly become harder to understand as the number of processes in-
creases.

The logging component has the following attributes:

• Configurable for logging granularity. For example, INFO, WARN, ERROR.

• Trivial to retrieve time ordered logs for a thread.

• Possible to retrieve logs, exit status, or exceptions for threads ending in an unexpected
state.

• Possible to retrieve enough information to rerun the data units that were unprocessed
because of processes ending in unexpected state. KSK: perhaps this is solved by the
provenance system.

• Searchable per process for regexp and timestamp.

Derived from §3.1.

4.3 Capability for developers to run pipelines at scale

..

Assignee

.
Simon

I believe we aggreed that if the logging system and provenance system are sufficient to meet
recommendations, this aspect is essentially a solved problem.

I do think that it also depends on the orchestration layer, but I don’t think that can be in the
scope of this group.

Derived from §3.1.

4.4 Guidance on visualization

..

Assignee

.
Simon

We decided that this

D R A F T 12 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

section should first be seeded with contexts for visualization. We can then go through and
give specific guidance.

Contexts:

• Notebooks in-line: matplotlib-ish

• Dashboard like visualization: health status (grafana?)

• Pipelines debugging visualization: both persisted PNGs and pop up vis

• Purpose built QA visualization: Like the multisky plot from qa_explorer

• Exploratory: Single plots with interactivity, including zoom and pan

• Linked plots: Interaction in one frame causes chnge of state in another plot

• Image visualization: (covered elsewhere)

• Publication plotting

• Static plots for reports

• Plotting from a non-notebook interactive setting

• Rendering of cached time series: SQuaSH

Derived from §3.1.

We’re requesting a set of guidelines for developers here, not a new framework — but that’s
still a concrete deliverable (it’s just documentation, rather than code). We might suggest that
these guidelines be developed by a new WG, per Simon’s suggestion4.

4.5 Image viewer

..

Assignee

.
Trey

Derived from §3.1.
4https://confluence.lsstcorp.org/display/DM/Pipeline+Debugging+Design

D R A F T 13 D R A F T

https://confluence.lsstcorp.org/display/DM/Pipeline+Debugging+Design

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

As of 2018-06-12 we haven’t converged on a solid recommendation here.

Key considerations:

• Firefly is the annointed solution being provided by DM to external stakeholders (com-
missioning, operations, etc). It feels right to everybody that we should be dogfooding it,
and also benefitting from development being carried out for those stakeholders.

• Currently, Firefly is unappealing to developers (primarily, I think, because of slowness of
user interface, and perhaps also due to installation issues). Can we resolve these issues?

• We’d want to support visualization in a number of different environments, for e.g.:

– Inside a Jupyter notebook;

– As a standalone tool, à la DS9;

– Embedded in a dashboard, à la JS9, Aladin-Lite, etc.

• Do we lose flexibility bymandating the use of a backend-agnostic API (afwDisplay) rather
than going “all-in” on e.g. a custom Firefly interface?

• We’ll need to do full focal plane visualization, which none(?) of the current tools support
well.

Options include:

• Do nothing; continue as we are, which means most people will use DS9 and a few will
drift to Firefly as commissioning ramps up.

• Issue some sort of edict that pipelines developers have to use Firefly.

• Encourage the use of someother tool (Ginga?) instead of or aswell as someof the above.

• Probably others.

Sounds like we need somebody from the QAWG to actually write some requirements — or a
wishlist set of features we want — here.

D R A F T 14 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

4.6 Catalog visualization tools

..

Assignee

.
Lauren

Derived from §3.1.

It is important for developers to be able to easily, and interactively, visualize large quantities
of catalog data. The PyViz ecosystem (HoloViews/Datashader/Dask/Pandas) is designed for
exactly this purpose, and so the QAWG recommends the following:

• Including up-to-date PyViz packages in the LSST stack,

• Developing basic tools using this ecosystem that mesh with existing stack infrastructure
(e.g., Butler, AfwTable),

• Providing training to developers on how to use it,

• Enabling users to use Dask to work with larger-than-memory data, either with the ability
to spin upDask clusters ondemand, or (perhaps preferred) to have a central Dask cluster
at the LDF to which users can connect.

4.7 Provenance

..

Assignee

.
Hsin-Fang

The QAWG recognizes the importance of provenance and the implementation of the prove-
nance system will impact QA work significantly. We recommend high priority to finalize the
design and implementation of the provenance system.

The QAWG believes that the requirements on provenance tracking are adequate as described
in the Data Management Middleware Requirements (LDM-556) and Data Management Data
Backbone Services Requirements (LDM-635). QA use cases provide no further requirements.

With the current design of the Gen 3 Middleware, each dataset can be linked to provenance
information such as input datasets, pipeline definition, configurations, and software version
(e.g. DMS-MWST-REQ-0024 and DMS-MWBT-REQ-0096 in LDM-556). QC metric values will be

D R A F T 15 D R A F T

http://pyviz.org
http://holoviews.org
http://datashader.org
http://dask.pydata.org
http://pandas.pydata.org

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

Butler datasets so they will be associated with specific data IDs, and their provenance can be
traced like other datasets. In the Gen 3 Middleware design, Butler/SuperTask framework is
responsible of producing provenance. For production runs, the Data Backbone Services may
store additional provenance, for example from the Batch Production Services, besides the
Butler/SuperTask generated provenance. In the QA use cases, the primary source of prove-
nance will be the Gen3 Butler/SuperTask generated provenance.

Regarding provenance of the database records, the QAWG does not place a strong require-
ment on per-source provenance. The current design is that each database record in the pro-
duction database is either ingested from a file, of which the full provenance is traced, or from
an uniquely identifiable execution. This design does not directly provide detailed per-source
provenance, such as what exact input images acually contribute to themeasurement of a par-
ticular source, but the full inputs that can contribute to the source. The provenance tracking
of synthetic sources is also unclear. The QAWG thinks most low-level information can be un-
covered through the drill down system (§3.2). Diagnostic information can also be computed
in the pipeline codes and stored as additional columns. We recommend the tooling to in-
vestigate the composition of coadds be made in the drill down system and does not put this
requirement in the provenance system.

The QAWG notes that some high level aggregate data products that are derived from prove-
nance data can be useful in QA work. For example, the number of images that contribute
to each coadd patch can be obtained from provenance data. However, the QAWG are not
immediately convinced that it’s worth spending significant time investigating what aggregate
products need to be considered.

Derived from §3.1.

This section should note:

• That provenance is an immediate issue impacting QA work, so a solution is a priority;

• Some requirements as to the granularity at which provenance tracking is necessary for
QA.

4.8 Documentation content updates

Derived from §3.3.

D R A F T 16 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

..

Assignee

.
John

• Clearer guidance on unit tests.

• Clearer guidance on code review, with requirements for test coverage etc.

4.9 Testing for documentation

Derived from §3.3.

..

Assignee

.
John

• Examples.

4.10 CI system updates

Derived from §3.3.

..

Assignee

.
John

• Test coverage.

• Tighter control of the environment.

• Better notifications.

• Better descriptions of which jobs do what.

• Clear description of what Developers are required to do before merging to master (see
also §4.8).

D R A F T 17 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

4.11 Metrics Dashboard / SQuaSH

Derived from §3.3.

..

Assignee

.
Angelo

Todate, SQuaSHhas beenused to followa subset of KPMs computedby validate_drp for track-
ing performance regressions due to pipeline changes by regularly reprocessing test datasets
in Jenkins/CI.

The following recommendations would enhance SQuaSH capabilities for DM developers.

..

Recommendation

.

SQuaSH should be used by developers for tracking metrics on
their particular projects.

Developers can instrument their science pipeline Tasks using lsst.verify and create new
verification packages to be tracked in SQuaSH (see e.g. jointcal). It would be interesting to
send results to SQuaSHwhen testing development branches, so that developers can compare
the new metric values with the previous values beforemerging to master. Any metric defined
in lsst.verify.metrics should be uploaded to SQuaSH including, for example, computational
metrics like code execution time.

..

Recommendation

.
SQuaSH should provide automated notification of regressions.

Metric specifications in lsst.verify include thresholds that can be used to automatically de-
tect and notify regressions. The notifications could be presented to developers by Slack, for
example.

..

Recommendation

.
SQuaSH should provide a metric summary display.

Verification packages might have specialized visualizations for displaying metric summary in-
formation in addition to the current time series plot. DM developers should be able to extend
SQuaSH by creating new visualizations following developer documentation provided in the

D R A F T 18 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

SQuaSH Documentation (https://squash.lsst.io/)

..

Recommendation

.

SQuaSH should support the LDF execution environment in ad-
dition to Jenkins/CI.

Pipeline runs on larger datasets (e.g. HSC RC2 weekly reprocessing) require more compu-
tation than can be provided in the Jenkins/CI environment. SQuaSH should be flexible to
support other environments like the LDF environment.

..

Recommendation

.

SQuaSH should be able to store and display metric values per
DataIds (e.g. CCD, visit, patch, tract, filter).

Pipeline runs on larger datasets (e.g. HSC RC2 weekly reprocessing) also require to store
and display metric values per DataIds as opposed to the entire dataset (e.g. test datasets in
Jenkins/CI). The ability to identify metric values per filter name or spatially by CCD in a visit
or per patch in a tract, would enhance SQuaSH display and monitoring capabilities, turning
SQuaSH or its successor into a richer metric dashboard (see also §3.2).

4.12 Standard format dataset package

Derived from §3.3.

..

Assignee

.
Hsin-Fang

The key considerations andmotivations to standardize test datasets in the construction phase
include:

• Developers would like low-friction access to test datasets. A central location where de-
velopers can look up what has been curated is desired.

• Developers would like datasets at multiple scales and representative of various data
quality and observing conditions. The properties of these datasets much be well under-
stood.

D R A F T 19 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

• Besides raw (unprocessed) data, intermediate andfinal data products fromvarious stages
of pipeline processing are wanted. They facilitiate testing of algorithms which are only
relevant to later parts of the pipeline or analysis codes without the need of regenerating
the products.

• Datasets require continuing maintenance. Data products based on a recent software
release are usually wanted.

The standard format of a dataset package is a ready-to-use Butler repository and follows the
format of a Butler repository as defined in its corresponding obs package. The format is con-
figurable by design, however, it is tied to the codes in the stack, so can change from a software
stack version to another. Besides implementations in the obs packages and Butler, other
evolvement in the software stack, such as handling of calibration data and reference catalog,
can alsomake a once-working repository incompatible. Therefore, maintenance is occassion-
ally needed to ensure the usability of a dataset package. The QAWG recommends having a
per-dataset product owner.5 Product owners are responsible for ensuring that the content
and use cases of the datasets are well described and compatible with recent stack versions.
The owner of a dataset can typically be the team with immediate use cases and knowledge of
its camera package.

TheObs PkgWG (RFC-393) is charged to re-design and refactor the obs packages formaintain-
ability and extensibility. We suggest the Obs Pkg WG take into considerations in their design
to mitigate the close tie between a Butler repository and its obs package implmentations, as
well as adopt a common structure across different cameras when possible. After the refac-
toring, the obs packages shall rarely change so the dataset format will be more stable. The
QAWG recommends prioritise the Obs Pkg WG.

In some cases, a dataset pacakge may contain additional data that are not tenable in the for-
mat of a Butler repository. We recommend following the format as described inDMDeveloper
Guide Common Dataset Organization and Policy 6 and update the policy as needed.

As for the storage of test datasets, we consider any test dataset package being either small or
large, based on its size and use cases. The QAWG’s recommendations are as follows.

5At the time of writing, our test datasets include the following: afwdata, ap_verify_hits2015, testdata_cfht,
testdata_deblender, testdata_decam, testdata_jointcal, testdata_lsstSim, testdata_subaru, qserv_testdata, valida-
tion_data_cfht. validation_data_decam, validation_data_hsc, /datasets/auxTel, /datasets/comCam, /datasets/c-
tio0m9, /datasets/lsstCam, /datasets/decam /datasets/des_sn, /datasets/hsc, /datasets/refcats, /datasets/sdss,
/datasets/gapon

6https://developer.lsst.io/services/datasets.html

D R A F T 20 D R A F T

https://jira.lsstcorp.org/browse/RFC-393
https://developer.lsst.io/services/datasets.html

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

• Storage of small datasets

We consider small datasets as those smaller than around 100 GB and comfortably op-
eratable as a Git LFS repository. They are carefully selected to meet specific use cases.
The use cases of small datasets include

– as input test data in CI jobs in the DM Jenkins system (§4.10);

– as example data in documentations, demos, and tutorials.

To meet their needs, we recommend them

– packaged as EUPS products;

– made publicly available on GitHub;

– stored as Git LFS repositories as needed;

– tagged their versions with the DM software releases;

– documented clearly its use cases and named product owner for each dataset;

• Storage of large datasets

We consider large datasets as those larger than around 100 GB and hence transferring
over network takes longer than an hour typically. They can contain edge cases that have
not been identified to form specific small test datasets, or for use cases in which data
volume is important. We recommend them

– made available on LSST development machines (currently on GPFS);

– usable and shared by team members;

– protected under a disaster recovery policy;

– documented clearly its use cases and named product owner for each dataset;

4.13 Standard test package design

Derived from §3.3.

..

Assignee

.
Hsin-Fang

Currently, automatic continuous integration tests are performed via multipla packages under
two designs: (1) Scons-based execution, including ci_hsc and ci_ctio0m9, and (2) exeuction

D R A F T 21 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

through shell scripts in validate_drp. Both ci_hsc and validate_drp are run in Jenkins and trig-
gered by timers every night (§4.10).

It’s QAWG’s understanding that the validate_drp scripts will eventually replace ci_hsc and
ci_ctio0m9, and a set of test scripts will be run in a meta-package named lsst_ci. However, at
the time of writing, the validate_drp scripts test only the single frame processing step, while
ci_hsc exercises almost the entire end-to-end DRP pipelines. There has not been sufficient re-
sources in implementing further processing in validate_drp. Similarly, the lsst_dm_stack_demo
repository should be converted into an EUPS product and a test script added to lsst_ci for ex-
ecution (DM-14806).

The QAWG recommends priority to unify the CI test package design and finish the transition
to validate_drp. If such effort cannot be allocated, documentations should be added to clearly
describe the status quo, and recommendations for developers during the transition should
be added to the Developer Guide (similar to §4.8 and §4.10). Before validate_drp can replace
ci_hsc and ci_ctio0m9, the packages should be maintained.

Should address the union of lsst_dm_stack_demo, ci_hsc, validate_drp use cases.

A Glossary
aggregate metric An aggregation of multiple point metrics. For example, the overall photo-

metric repeatability for a particular tract given multiple observations of each star.
aggregation A single result—e.g., ametric value—computed from a collection of input values.

For example, we can sum or average a metric computed over patches to produce an
aggregate metric at tract level.

CI Continuous Integration.
dashboard A visual display of themost important information needed to achieve one ormore

objectives, consolidated and arranged on a single screen so that the information can
be monitored at a glance (Few, 2013).

DM Data Management.
drill down Move from a higher level aggregation of data to its inputs. For example, given

data describing a tract, we might drill down to constituent patches and then to ob-
jects; given a visit, we might drill down to CCD and then source. In the context of this
document, it refers to the act of identifying an issue in a high-level summary of the
data (e.g. an aberrant metric value) and interactively investigating its inputs to find
the source of the problem.

D R A F T 22 D R A F T

https://jira.lsstcorp.org/browse/DM-14806

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

GPFS IBM’s General Parallel File System; now known as IBM Spectrum Scale. In DM use, this
is taken to mean bulk data storage provided through a POSIX filesystem interface at
the LSST Data Facility.

KPM Key Performance Metric.
metricWe follow the SQR-019 definition of ametric as ameasurable quantities whichmay be

tracked. A metric has a name, description, unit, references, and tags (which are used
for grouping). A metric is a scalar by definition. We consider multiple types of metric
in this document; see aggregate metric, model metric, point metric.

metric value The result of computing a particular metric on some given data. Note that we
compute, rather than measure, metric values.

model metric A metric describing a model related to the data. For example, the coefficients
of a 2D polynomial fit to the background of a single CCD exposure.

monitoring The process of collecting, storing, aggregating and visualizing metrics.
point metric A metric that is associated with a single entry in a catalog. Examples include

the shape of a source, the standard deviation of the flux of an object detected on a
coadd, the flux of an source detected on a difference image.

QA Quality Assurance.
QAWG QA Strategy Working Group.
releaseable product A software package or other component of the DM system which is

expected to be included in the next tagged release of the system. At time of writing,
this implies inclusion in a standard top-level package (e.g. lsst_distrib), but we note
that future changes to the release procedure may render that definition obsolete.

SDQA Science Data Quality Assurance.
SQuaSH Science Quality Analysis Harness; SQR-009; https://squash.lsst.codes.
tidy data Tidy datasets have a specific structure: each variable is a column, each observation

is a row, and each type of observational unit is a table (Wickham, 2014).

References

[LDM-556], Dubois-Felsmann, G., Jenness, T., Bosch, J., et al., 2018, Data Management Middle-
ware Requirements, LDM-556, URL https://ls.st/LDM-556

[SQR-009], Fausti, A., 2017, The SQuaSH metrics dashboard, SQR-009, URL https://sqr-009.

lsst.io

Few, S., 2013, Information Dashboard Design, Analytics Press, 2 edn.

D R A F T 23 D R A F T

https://squash.lsst.codes
https://ls.st/LDM-556
https://sqr-009.lsst.io
https://sqr-009.lsst.io

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
QA Strategy Working Group Report DMTN-085 Latest Revision 2018-07-10

[LDM-635], Gower, M., Butler, M., Lim, K.T., 2018, Data Management Data Backbone Services
Requirements, LDM-635, URL https://ls.st/LDM-635

[SQR-019], Sick, J., Fausti, A., 2018, LSST Verification Framework API Demonstration, SQR-019,
URL https://sqr-019.lsst.io

[LDM-622], Swinbank, J., 2018, Data Management QA Strategy Working Group Charge, LDM-622,
URL https://ls.st/LDM-622

Wickham, H., 2014, Journal of Statistical Software, Articles, 59, 1, URL https://www.jstatsoft.

org/v059/i10, doi:10.18637/jss.v059.i10

D R A F T 24 D R A F T

https://ls.st/LDM-635
https://sqr-019.lsst.io
https://ls.st/LDM-622
https://www.jstatsoft.org/v059/i10
https://www.jstatsoft.org/v059/i10
http://doi.org/10.18637/jss.v059.i10

	Introduction
	Approach to the Problem
	Pipeline debugging
	Drill down
	Datasets and test infrastructure

	Design sketch
	Pipeline debugging
	A pipeline is segfaulting
	A pipeline is throwing an exception
	A ci run shows a regression in a metric value

	Drill down
	Metric computation and persistence
	Drill-down workflows and display
	Automated regression testing

	Datasets and test infrastructure

	Core components
	Updated pipeline debugging system
	Logging
	Capability for developers to run pipelines at scale
	Guidance on visualization
	Image viewer
	Catalog visualization tools
	Provenance
	Documentation content updates
	Testing for documentation
	CI system updates
	Metrics Dashboard / SQuaSH
	Standard format dataset package
	Standard test package design

	Glossary

